• 제목/요약/키워드: ABA triblock copolymers

검색결과 8건 처리시간 0.019초

Synthesis and pH-Dependent Micellization of a Novel Block Copolymer Containing s- Triazine Linkage

  • Pal Ravindra R.;Lee Doo Sung
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.373-384
    • /
    • 2005
  • Novel pH-sensitive moieties containing an s-triazine ring were synthesized with sulfonamide and secondary amino groups. The synthesized pH-sensitive moieties were used for the synthesis of a pH-sensitive amphiphilic ABA triblock copolymer. The pH-sensitive triblock copolymer was composed of diblock copolymers, methoxy poly(ethylene glycol)-poly ($\varepsilon$-caprolactone-co-D,L-lactide) (MPEG-PCLA), and pH-sensitive moiety. These copolymers could be dissolved molecularly in both acidic and basic aqueous media at room temperature due to secondary amino and sulfonamide groups. The synthesized s-triazine rings containing pH-sensitive compounds were characterized by ${^1}H-NMR,\;{^13}C-NMR$, and LC/MSD spectral data. The synthesized diblock and triblock copolymers were also characterized by ${^1}H-NMR$ and GPC analyses. The critical micelle concentrations at various pH conditions were determined by fluorescence technique using pyrene as a probe. Furthermore, the micellization and demicellization study of the triblock copolymer was done with pH-sensitive groups. The sensitivity towards pH change was further established by acid-base titration.

Trimethylene Carbonate 와 $\varepsilon$-caprolactone ABA 트리블럭 공중합체의 합성 및 특성 (Synthesis and Characterization of ABA Type Block Copolymers of Trimethylene Carbonate and $\varepsilon$-caprolactone)

  • Jia, Yong-Tang;Kim, Hak-Yong;Jian Gong;Lee, Duok-Rae;Bin Ding;Narayan Bhattarai
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.352-354
    • /
    • 2002
  • A series of ABA type triblock copolymers of trimethylene carbonate (TMC) and $\varepsilon$-caprolactone($\varepsilon$-CL) with different molar ratio were synthesized using ethylene glycol as initiator and stannous octoate as catalyst by ring-opening bulk polymerization. The characterization of the triblock copolymers was characterized by $^1$H-NMR, $\^$13/C-NMR, FT-IR, GPC and DSC, and compared with random copolymer. (omitted)

  • PDF

고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석 (Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes)

  • 김애란
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

지속 가능한 블록 공중합체 기반 열가소성 탄성체 (Sustainable Block Copolymer-based Thermoplastic Elastomers)

  • 신지훈;김영운;김건중
    • 공업화학
    • /
    • 제25권2호
    • /
    • pp.121-133
    • /
    • 2014
  • ABA형태의 삼중블록공중합체는 고무상과 유리상의 상대적 성분에 좌우되는 열가소성 탄성체와 강화 플라스틱으로써 유용하다. 이러한 물질은 다른 고분자와 혼합하여 첨가제, 강화제, 상용화제로써 기능성을 줄 수 있다. 상업적으로 유용한 대부분의 블록 공중합체는 석유로부터 유래된다. 지구상의 유한한 화석자원 공급과 석유 사용 및 채굴에 관련된 경제, 환경적 비용을 고려하면 그 대안은 매력적이다. 이러한 흐름에 더하여 미래 지속 가능한 물질의 최종 용도를 위한 설계 및 그 실행이 요구되고 있다. 본 총설에서는 재생 가능한 ABA 형태의 삼중블록 공중합체 합성과 특성을 살펴보고, 특히 공중합체의 경성부분을 위한 높은 유리 전이온도 혹은 녹는점을 지닌 식물 유래 폴리올레핀과 다당류 유래 폴리락타이드와 공중합체의 연성부분을 위한 바이오 기반, 낮은 유리 전이온도, 무결정의 탄화수소계 고분자에 대해 논의하려고 한다. 이를 위해서 다양하게 제어된 고분자 중합법은 강력한 도구임이 증명되고 있다. 이러한 혼성 고분자의 정교한 합성에 관한 연구는 재생가능성, 생분해성, 고성능을 지닌 새로운 탄성체와 강화 플라스틱의 발전을 이끌고 있다.

Preparation and Chain-extension of P(LLA-b-TMC-b-LLA) Triblock Copolymers and Their Elastomeric Properties

  • Kim, Ji-Heung;Lee, Ju-Hee
    • Macromolecular Research
    • /
    • 제10권2호
    • /
    • pp.54-59
    • /
    • 2002
  • ABA triblock copolymers of L-lactide and trimethylene carbonate with several different compositions were prepared by sequential ring-opening polymerization in the presence of diethylene glycol. Also chain-extension reactions of the resulting copolymers were carried out using hexamethylene diisocyanate to produce relatively high molecular weight polymers, which could be cast into elastomeric tough films. The polymers with certain L-lactide contents were partially crystalline, exhibiting two-phase morphology. The polymer films showed reversible elastic behavior under tensile tension, providing a novel thermoplastic elastomer possessing desirable properties such as biodegradability and good mechanical properties.

Features of Microphase-Separated Structures in Asymmetric Triblock Copolymers $A_{1}-B-A_{2}$

  • Yamamoto, Katsuhiro;Tanida, Kenichi;Shimada, Shigetaka;Fukuhara, Junji;Sakurai, Shinichi
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.338-338
    • /
    • 2006
  • Equilibrium behavior of ABA triblock copolymer with different lengths of endblock A chains was examined using self-consistent field theory by Matsenl. It was found that at small asymmetries, the A block bidispersity reduces the stretching energy of the A domains. This effect causes a slight increase in the domain spacing and shifts the order-order transitions toward higher A volume fractions. At large asymmetries, the short A blocks pull free of their domains allowing their B blocks to relax. A feature of microphase-separated structure of asymmetric poly(methyl acyrylate) (PMA)-b-polystyrene-b-PMA using SAXS, DSC and ESR was experimentally examined. These measurements gave an evidence of the solubilization of short A chains to the B domains.

  • PDF

DMF와 Benzene에서 PS-PEG-PS의 solution거동 (Solution behavior of PS-PEG-PS triblock copolymer in DMF and Benzene)

  • Kim, Eun-Sub;Kim, Byoung-Chul;Ahn, Sung-Kook;Cho, Chang-Gi
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.179-180
    • /
    • 2003
  • ABA triblock copolymer made up of long middle block(B) and sho.1 terminal blocks(A) is being widely used as thermoplastic elastomers. Block copolymers with non-polar hydrophobic polystyrene and polar hydrophilic poly(ethylene glycol) blocks has been prepared and the physical properties of the solutions of PS-PEG-PS in polar (dimethyl formamide, DMF) and non-polar solvent (benzene) were investigateded[-3]. (omitted)

  • PDF

Possibility of Wound Dressing Using Poly(L-leucine)/poly(ethylene glycol)/poly(L-leucine) Triblock Copolymer

  • 김현정;조종수
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.249-254
    • /
    • 1997
  • ABA-type block copolymers composed of poly(L-leucine)(PLL) as the A component and poly(ethylene glycol)(PEG) as the B component were synthesized by ring-opening polymerization of L-leucine N-carboxyanhydride initiated by primary amino group located at both ends of PEG chain. A silver sulfadiazine(AgSD)-impregnated wound dressing of sponge-type was prepared by the lyophilization method. Morphological structure of this wound dressing obtained by scanning electron microscopy(SEM) was composed of a dense skin layer and a macroporous inner sponge layer. Equilibrium water content(EWC) of wound dressing was above 10%. It increased with an increased of PEO content in the block copolymer due to the hydrophilicity of PEO. AgSD release from AgSD- impregnated wound dressing in PBS buffer(pH=7.4) was dependent on PEG composition in the block copolymer. Therefore, EWC and release of AgSD can be control by PEG composition. Antibacterial capacity of AgSD-impregnated wound dressing was examined in agar plate against Pseudmonas aeruginosa and Stapplococus aruous. Cytotoxicity of the wound dressing was evaluated by studing mouse skin fibroblast(L929). From the behavior of antimicrobial releasing and the investigation of the suppression of bacterial proliferation, it was supposed that the wound dressing containing antibiotics could protect the wound surfaces from bacterial invasion to suppress the bacterial proliferation effectively. In cytotoxicity observation, cellular damage was reduced by the control led released of AgSD from the LEL sponge matrix of AgSD-medicated wound dressing. In vivo test, granulous tissue formation and wound contraction or the AgSD and DHEA impregnated wound dressing were aster than any other groups.

  • PDF