• 제목/요약/키워드: AAO Template

검색결과 76건 처리시간 0.035초

나노템플레이트 표면처리를 통한 나노패턴이 형성된 PDMS 탄성 스탬프 몰드 제작 (Fabrication of Nanopatterned PDMS Elastic Stamp Mold Using Surface Treatment of Nanotemplate)

  • 박용민;서상현;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.38-42
    • /
    • 2015
  • Polydimethylsiloxane (PDMS) is a widely used material for replicating micro-structures because of its transparency, deformability, and easy fabrication. At the nanoscale, however, it is hard to fill a nanohole template with uncured PDMS. This paper introduces several simple methods by changing the surface energy of a nanohole template and PDMS elastomer for replicating 100nm-scale structures. In the case of template, pristine anodic aluminum oxide (AAO), hydrophobically treated AAO, and hydrophillically treated AAO are used. For the surface energy change of the PDMS elastomer, a hydrophilic additive and dilution solvent are added in the PDMS prepolymer. During the molding process, a simple casting method is used for all combinations of the treated template and modified PDMS. The nanostructured PDMS surface was investigated with a scanning electron microscope after the molding process for verification.

AAO Template를 이용한 Au/TiO2 나노섬유 제조 및 응용에 관한 연구 (A Study on the Preparation and Application of Au/TiO2 Nanofiber from AAO Template)

  • 엄선미;박상선;김영덕;김용록;설용건
    • 전기화학회지
    • /
    • 제12권1호
    • /
    • pp.47-53
    • /
    • 2009
  • 본 연구에서는 불순물이 포함된 Al 기판으로부터 두 단계의 양극산화 (anodization) 법에 의해 균일한 나노기공을 갖는 AAO(Anodic Aluminum Oxide)을 제조하였다. 생성된 AAO템플릿 위에 Deposition-Precipitation(DP)방법을 사용하여 수직으로 형성된 $TiO_2$ 나노섬유에 Au를 첨가시켜 2 wt.% $Au/TiO_2$ 나노섬유룰 제조하였다. 두 단계의 양극산화를 통해 규칙적으로 배열된 AAO 기공 형상과 기판 위에 수직으로 배향된 $TiO_2$ 나노섬유의 형상을 SEM을 통해 확인하였다. 또한 $Au/TiO_2$ 나노섬유의 특성은 XRD와 Raman 분석을 통하여 $TiO_2$의 아나타제(anatase)와 루타일(rutile) 결정구조와 $TiO_2$ 나노섬유에 담지된 Au의 존재를 확인하였다. 또한 일산화탄소(CO) 산화반응을 통해 AAO(Anodic Aluminum Oxide)기판 위에 형성된 $TiO_2$와 2 wt% $Au/TiO_2$ 나노섬유의 광촉매적 활성을 비교하였다.

바이오센서로 응용을 위한 양극산화알루미늄의 양극산화 온도에 따른 제작 및 전기적 특성 (Fabrication and Electrical Properties of Anodic Aluminum Oxide Membrane with Various Anodizing Temperatures for Biosensor)

  • 여진호;이성갑;김용준;이영희
    • 한국전기전자재료학회논문지
    • /
    • 제27권6호
    • /
    • pp.394-398
    • /
    • 2014
  • We fabricated the electrolyte-dielectric-metal (EDM) sensor on the base of AAO (anodic aluminum oxide) template with variation of the anodizing temperature. When a surface is immersed or created in an aqueous solution, a discontinuity is formed at the interface where such physicochemical variables as electrical potential and electrolyte concentration change significantly from the aqueous phase to another phase. Because of the different chemical potentials between the two phases, charge separation often occurs at the interfacial region [1]. This interfacial region, togeter with the charged surface, is usually known as the electrical double layer (EDL) [2]. The structural and electrochemical properties of AAO sensor were investigated for applications in capacitive pH sensors. To change the thickness of the AAO template, the anodizing temperature was varied from $5^{\circ}C$ to $20^{\circ}C$, the thickness of the AAO template invreased from 300 nm to 477 nm. The pH sensitivity of sensors with the anodizing temperature of $20^{\circ}C$ showed the highest value of 56.4 mV/pH in the pH range of 3 to 11. The EDM sensor with the anodizing temperature of $20^{\circ}C$ exhibited the best long-term stability of 0.037 mV/h.

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • 김지민;양우석;오윤정;문주호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

에칭용액의 인산 첨가량에 따른 양극산화 알루미늄 템플레이트의 제작 및 특성 (Fabrication and Characterization of AAO Template with Variation of the Phosphoric Acid Amount of the Etching Solution)

  • 조예원;김용준;여진호;이성갑;김영곤
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.448-451
    • /
    • 2014
  • Anodic aluminum oxides (AAO) fabricated by the two-step anodizing process have attracted much attention for the fabrication of nano template because of pore structure with high aspect ratio, low cost process and ease of fabrication. AAOs are characterized by a homogeneous morphology of parallel pores that grow perpendicular to the template surface with a narrow distribution of diameter, length and inter-pores spacing, all of which can be easily controlled by suitably choosing of the anodizing parameters such as pH of the electrolyte, anodizing voltage and duration of anodizing. In this study, AAO templates were characterized by X-ray diffraction and field-emission scanning electron microscope (FE-SEM). The dependence of the pore size change according to the amount of addition of phosphoric acid, which was used to remove the initial alumina oxide layer, was not observed.

균일한 AAO 제작을 위한 공정변수 연구 (Study on the fabrication variable process for AAO which are uniform)

  • 추원일;정현영;김자올;정용호;이봉주;이승헌;권성구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.271-271
    • /
    • 2009
  • AAO(Anodic Aluminum Oxide)는 전형적인 자기정렬 되는 물질로 이루어진 나노 다공성 구조이며 많은 나노 기술적으로 응용이 되고 있다. 양극산화 알루미나 기술은 간단한 공정으로 경제적이며 규칙적인 배열의 나노 크기의 육각형의 셀 형태의 hole구조를 형성할 수 있는 장점을 가지고 있다. 이런 나노 다공성 구조는 나노 단위의 물질을 형성하는 Template로 유용하게 쓰인다. 균일한 대면적 AAO의 형성을 위한 공정 step의 개선, 공정변수의 영향에 대하여 연구 중이며 공정변수의 조절에 따라 hole의 직경, 길이, 균일성을 제어 가능하며 제작된 AAO의 특성은 FE-SEM, AFM을 이용하여 분석한다.

  • PDF

The Effect of Catalysts merged with alumina on the Growing Characteristics of Carbon Nanotubes using AAO templates

  • Lee, In-Wha;Lee, Tae-Young;Yang, Ji-Hoon;Ha, Byoung-Ho;Yoo, Ji-Beom;Kim, Seong-Kyu;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.697-700
    • /
    • 2002
  • Porous anodic aluminum oxide(AAO) templates prepared by anodizing method were used for growing multiwalled carbon nanotubes(CNTs). AAO templates with the homogeneous pore diameter and length were obtained by two step anodizing technique. Using AAO templates, vertically well-ordered two-dimensional carbon nanotube arrays were fabricated. We investigated the field emission property of CNTs grown using different catalyst metals in vacuum chamber (<$10^{-7}$ Torr) on AAO Template. To explain the different emission property, the surface reaction between catalysts and alumina pores which inserted carbon species of $C_2H_2$ using High resolution transmission electron microscopy (HRTEM) was studied.

  • PDF

급속열처리를 통한 알루미나 나노 템플레이트의 기공 균일도 개선에 관한 연구 (A Study on Improved Pore Uniformity of Nano Template using the Rapid Thermal Anneal)

  • 김동희;김진광;권오대;양계준;이재형;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.189-194
    • /
    • 2006
  • Ordered nanostructure materials have received attention due to their unique physical properties and potential applications in electronics, mechanics and optical devices. To actualize most of the proposed applications, it is quite important to obtain highly ordered nanostructure arrays. The well-aligned nanostructure can be achieved by synthesizing nanostructure material in the highly ordered template. To get well-aligned pore array and reduce process time, rapid thermal anneal by an IR lamp was employed in vacuum state at $500^{\circ}C$ for 2 hour. The pore array is comparable to a template annealed in vacuum furnace at $500^{\circ}C$ for 30 hours. The well-fabricated AAO template has the mean pore diameter of 70 nm, the barrier layer thickness of 25 nm, the pore depth of $9{\mu}m$, and the pore density of higher than $1.2{\times}10^{10}cm^{-2}$.