• Title/Summary/Keyword: AAO(anodic aluminum oxide)

Search Result 129, Processing Time 0.025 seconds

Magnetic Interaction in FeCo Alloy Nanotube Array

  • Zhou, D.;Wang, T.;Zhu, M.G.;Guo, Z.H.;Li, W.;Li, F.S.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.413-416
    • /
    • 2011
  • An array of FeCo nanotubes has been successfully fabricated in the pores of porous anodic aluminum oxide (AAO) templates by wetting templates method. The morphology and structure of the nanotube array were characterized by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. The average diameter of the nanotubes was about 200 nm, and the length was more than 10 ${\mu}m$. Vibrating sample magnetometer and superconducting quantum interference device were used to investigate the magnetic properties of the nanotube array. Interaction between the nanotubes has been found to be demagnetizing as expected and the switching field distribution is broad.

Plasma Electrolytic Oxidation Treatment of Al Alloys (알루미늄 합금의 플라즈마전해산화 처리 기술)

  • Mun, Seong-Mo;Kim, Ju-Seok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.115.2-115.2
    • /
    • 2016
  • Al alloys are being used widely for automobile, aerospace and mechanical components because of their high strength ratio to weight. However, still they suffer from abrasion or corrosion owing to insufficient resistances to friction or mechanical impact and chemical attack. Plasma electrolytic oxidation (PEO) method is one of the promising surface treatment methods for Al alloys which can render better hardness than aluminum anodic oxide (AAO) films prepared by conventional anodizing method in acidic solutions. In this presentation, some basic nature of PEO film formation and growth process on Al alloys will be presented based on the experimental results obtained and discussed in view of dielectric breakdown and reformation and the role of various anions in film breakdown and reformation of PEO films.

  • PDF

Investigation of Cell Behavior on Nanoporous Surface (나노기공 표면에서의 세포 행동양식에 관한 연구)

  • Chung, Sung-Hee;Yoon, Won-Jung;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • In this paper, we investigated the effect of nanostructure on the cell behaviors such as adhesion and growth rate. Nanoporous structures with various diameters (30, 40, 45, 50, 60 nm) and 500 nm of the depth were fabricated using the anodizing method. The water contact angle of the surface consisting of nanopores with 30 nm diameter was 40 degree and those were 60~70 degree in cases of nanopores with over 40 nm diameter. Hela cells were cultivated on various nanoporous structure surface to investigate the cell behavior on nanostructure. As a result, Hela cells preferred 30 nm diameter nanoporous surface that has lower water contact angle. This result was confirmed by protein adsorption experiment and scanning electron microscope investigation.

Fabrication of Hexagonally Assembled Gold Nonodots Based on Anodization of Aluminum (알루미늄 양극산화를 이용한 육각구조로 규칙적으로 배열된 금 나노구조 제조)

  • Lee, Joon Ho;Lee, Han Sub;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.191-194
    • /
    • 2009
  • Porous alumina prepared by anodization has been widely studied since it shows very regular nanostructures at inexpensive prices. In this article, porous alumina is obtained by anodization of aluminum in the oxalic acid. After the first formed oxide is selectively removed from the aluminum substrate, the hexagonal nanostructures on the fresh aluminum are converted to nanodots by the second anodization in boric acid. Nanodots are arrayed in the convex of the hexagonal nanostructures. The optimization condition for the fabrication of nanodots with a height of 20 nm is investigated in detail. Subsequently, a gold film is deposited on the nanodots, resulting in the formation of gold nanodots arrays which are probably interesting substrate for biosensor applications.

Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells (AAO를 사용한 고분자전해질 연료전지의 공기극 촉매층 구조 제어)

  • Cho, Yoon-Hwan;Cho, Yong-Hun;Jung, Nam-Gee;Ahn, Min-Jeh;Kang, Yun-Sik;Chung, Dong-Young;Lim, Ju-Wan;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • The cathode catalyst layer in polymer electrolyte membrane fuel cells (PEMFCs) was fabricated with anodic aluminum oxide (AAO) template and its structure was characterized with scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The SEM analysis showed that the catalyst layer was fabricated the Pt nanowire with uniform shape and size. The BET analysis showed that the volume of pores in range of 20-100 nm was enhanced by AAO template. The electrochemical properties with the membrane electrode assembly (MEA) were evaluated by current-voltage polarization measurements and electrochemical impedance spectroscopy. The results showed that the MEA with AAO template reduced the mass transfer resistance and improved the cell performance by approximately 25% through controlling the structure of catalyst layer.

Electrochemical Deposition of CdSe Nanorods for Photovoltaic Cell Applications (전기도금법을 이용한 태양전지용 CdSe 나노로드 제작)

  • Ji, Chang-Wook;Kim, Seong-Hun;Lee, Jae-Ho;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.596-600
    • /
    • 2009
  • Electrochemical deposition characteristics of CdSe nanorods were investigated for hybrid solar cell applications. CdSe nanorods were fabricated by electrochemical method in $CdSO_4$ and $H_2SeO_3$ dissolved aqueous solution using an anodic aluminum oxide (AAO) template. Uniformity of CdSe nanorods was dependent on the diameter and the height of holes in AAO. The current density, current mode, bath composition and temperature were controlled to obtain a 1:1 atomic composition of CdSe. CdSe nanorods deposited by direct-current method showed better uniformity compared to those deposited by purse-current and/or purse-reverse current methods due to the bottom-up filling characteristics. $H_2SeO_3$ concentration showed more significant effects on pH of solution and stoichiometry of deposits compared to that of $CdSO_4$. A 1:1 stoichiometry of uniform CdSe nanorods was obtained from 0.25M $CdSO_4-5$ mM $H_2SeO_3$ electrolytes with a direct current of 10 $mA/cm^2$ at room temperature. X-ray diffraction and electron diffraction pattern investigations demonstrate that CdSe nanorods are a uniform cubic CdSe crystal.

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • ;Lee, Jae-Hyeon;Choe, Sun-Hyeong;Im, Se-Yun;Lee, Jong-Un;Bae, Yun-Gyeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF

Measurement of Tensile and Bending Properties of Nanohoneycomb Structures (나노허니컴 구조물의 인장 및 굽힘 물성 측정)

  • Jeon, Ji-Hoon;Choi, Duk-Hyun;Lee, Pyung-Soo;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.23-31
    • /
    • 2006
  • We measured mechanical properties, including Young's modulus, effective bending modulus and nominal fracture strength of nanohoneycomb structures using an Atomic Force Microscope(AFM) and a Nano-Universal Testing Machine(UTM). Anodic aluminum oxide(AAO) films are well suited as nanohoneycomb structures because of the simple fabrication process, high aspect ratio, self-ordered hexagonal pore structure, and simple control of pore dimensions. Bending tests were carried out for cantilever structures by pressing AFM tips, and the results were compared with three-point bending tests and tensile tests using a Nano-UTM. One side of the AAO films is clogged by harrier layers, and looks like a face material of conventional sandwich structures. Analysis of this layer showed that it did not influence the bending rigidity, and was just a crack tip. The present results can act as a design guideline in applications of nanohoneycomb structures.

Evaluation of Durability for Al Alloy with Anodizing Condition (알루미늄 합금의 양극산화 조건에 따른 내구성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.152-152
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. It is a technique to develop metals for various uses, and extensive research on the commercial use has been performed for a long time. Aluminum anodic oxide (AAO) is generate oxide films, whose sizes and characteristics depending on the types of electrolytes, voltages, temperatures and time. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. The sulfuric acid was used as an anodizing electrolyte, controlling its temperature to $10^{\circ}C$. The anode was 5083 Al alloy with dimension of $5(t){\times}20{\times}20mm$ while the cathode was the platinum. The distance between the anode and the cathode was maintained at 3 cm. Agitation was introduced by magnetic stirrer at 300 rpm to prevent localized temperature rise that hinders stable growth of oxide layer. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition for $10^{\circ}C$, 10 vol.%, respectively. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant rate. In addition, using galvanostatic method, it was maintained at current density of $10{\sim}30mA/cm^2$ for 40 minutes. The cavitation experiment was carried out with an ultrasonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1 mm. The specimen after the experiment was cleaned in an ultrasonic, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the investigation, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with applied current density.

  • PDF

Performance improvement of membrane distillation using carbon nanotubes

  • Kim, Seung-Hyun;Lee, Tae-Min
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.367-375
    • /
    • 2016
  • Although the bucky paper (BP) made from carbon nanotubes (CNTs) possesses beneficial characteristics of hydrophobic nature and high porosity for membrane distillation (MD) application, weak mechanical strength of BP has often prevented the stable operation. This study aims to fabricate the BP with high mechanical strength to improve its MD performance. The strategy was to increase the purity level of CNTs with an assumption that purer CNTs would increase the Van der Waals attraction, leading to the improvement of mechanical strength of BP. According to this study results, the purification of CNT does not necessarily enhance the mechanical strength of BP. The BP made from purer CNTs demonstrated a high flux ($142kg/m^2{\cdot}h$) even at low ${\Delta}T$ ($50^{\circ}C$ and $20^{\circ}C$) during the experiments of direct contact membrane distillation (DCMD). However, the operation was not stable because a crack quickly formed. Then, a support layer of AAO (anodic aluminum oxide) filter paper was introduced to reinforce the mechanical strength of BP. The support reinforcement was able to increase the mechanical strength, but wetting occurred. Therefore, the mixed matrix membrane (PSf-CNT) using CNTs as filler to polysulphone was fabricated. The DCMD operation with the PSf-CNT membrane was stable, although the flux was low ($6.1kg/m^2{\cdot}h$). This result suggests that the mixed matrix membrane could be more beneficial for the stable DCMD operation than the BP.