Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.928-930
/
2005
얼굴의 특징점 추적은 많은 응용프로그램에서 사용된다. AAM기반의 접근방식은 정교한 얼굴 특징점 정보를 제공하지만 정확한 특징 점 추출을 위해 얼굴 모양 파라미터 초기화 문제와 연속 영상에서 얼굴의 이동이 클 경우 모션 보정에 대한 문제가 여전히 남아있다. 이러한 문제를 풀기 위해 본 논문에서는 CAMShift를 사용해 얼굴 영역을 추적하고, 얼굴 영역 내에서 입을 검출함으로써 AAM 검색을 위한 얼굴 모양 파라미터를 추정하는 방법을 제안한다. 기존 알고리즘과의 비교 실험을 통해 얼굴의 움직임이 심한 상황에서도 제안하는 알고리즘의 성능이 매우 우수함을 확인할 수 있었다.
본 논문에서는 심도(Depth) 카메라로부터 실시간 획득한 RGBD 데이터에서 심도 정보 기반의 AAM(Active Appearance Models)과 나이 인식 알고리즘[1]을 통해 4 개의 AG(Age Group)으로 분류하는 실시간 얼굴 나이 인식 시스템(Real-time Facial Age Recognition System)을 설계한다. 기존의 AAM 을 이용한 실시간 얼굴 특징 추출은 평균 약 4.17%의 프레임 손실율을 보였으나, 심도 정보를 활용한 AAM 은 평균 약 0.43%의 프레임 손실율만을 보였다[5]. 본 논문에서는 심도 정보를 활용한 AAM과 병렬 처리 방법인 CUDA 를 결합하여 나이 특징을 추출하고, 실시간 시스템에 적용 가능하도록 나이 인식 알고리즘을 개선하여 실시간 나이 인식 시스템을 설계한다. 설계된 시스템은 1)머리 위치 추적, 2)얼굴 인식 및 특징점 추출, 3)나이 특징 추출, 4) 나이 특징 분석, 5) 나이 분류의 5 가지 단계를 통해 최종적으로 4 개의 AG 로 분류한다.
Indonesia's Keplauan Liau region is facing limitations in the development of connected transportation infrastructure due to its archipelago nature, budget constraints, and lack of land. Transportation demand is increasing due to its strategic location in the Malacca Strait Business Triangle and many tourist visits from Singapore and Malaysia. However, due to the nature of connecting many islands, the establishment of transportation infrastructure has not been achieved. This paper aims to predict the innovations that can be brought about by the introduction of advanced air mobility (AAM) with an electric vertical take-off and landing (e-VTOL) system through analysis and application consideration of the actual situation in Indonesia's Kepulauan Liau region. In addition, it intends to contribute to national-level review and policy establishment on the establishment of innovative transportation infrastructure using AAM, reflection in infrastructure construction plans, and active global cooperation.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.4
/
pp.562-567
/
2009
As a key mechanism of the human emotion interaction, Facial Expression is a powerful tools in HRI(Human Robot Interface) such as Human Computer Interface. By using a facial expression, we can bring out various reaction correspond to emotional state of user in HCI(Human Computer Interaction). Also it can infer that suitable services to supply user from service agents such as intelligent robot. In this article, We addresses the issue of expressive face modeling using an advanced active appearance model for facial emotion recognition. We consider the six universal emotional categories that are defined by Ekman. In human face, emotions are most widely represented with eyes and mouth expression. If we want to recognize the human's emotion from this facial image, we need to extract feature points such as Action Unit(AU) of Ekman. Active Appearance Model (AAM) is one of the commonly used methods for facial feature extraction and it can be applied to construct AU. Regarding the traditional AAM depends on the setting of the initial parameters of the model and this paper introduces a facial emotion recognizing method based on which is combined Advanced AAM with Bayesian Network. Firstly, we obtain the reconstructive parameters of the new gray-scale image by sample-based learning and use them to reconstruct the shape and texture of the new image and calculate the initial parameters of the AAM by the reconstructed facial model. Then reduce the distance error between the model and the target contour by adjusting the parameters of the model. Finally get the model which is matched with the facial feature outline after several iterations and use them to recognize the facial emotion by using Bayesian Network.
Incorporation of polar functional moieties into polyethylene (PE) film has been achieved by graft copolymerization of polar monomers such as methacrylic acid (MAAc) and acrylamide (AAm) on to PE film, preirradiated with ${\gamma}$-rays from $^{60}Co$ source, using benzoyl peroxide (BPO) as initiator in aqueous medium. Percentage of grafting of MAAc and AAm was determined as a function of irradiation dose, monomer and initiator concentration, temperature, reaction time and amount of water. Maximum percentage of grafting of MAAc (1453%) and AAm (21.28%) was obtained at [MAAc] = $235.3{\times}10^{-2}$ mol/L, [AAm] = $23.4{\times}10^{-2}$ mol/L, [BPO] = $5.5{\times}10^{-2}$ mol/L and $16.5{\times}10^{-2}$ mol/L at $80^{\circ}C$, $90^{\circ}C$ in 180 min and 90 min respectively. The grafted PE films were characterized by FTIR, Thermogravimetric analysis (TGA) Scanning Electron Micrography (SEM) and X-ray diffraction methods. Some selective properties of grafted films such as swelling behavior, ion and metal uptake have been carried out. The biodegradation studies of the grafted PE films have also been investigated. The grafted films developed superior swelling behavior with maximum swelling (480%) in water as compared to pristine PE (13.55%), better thermal stability and ion and metal uptake studies showed promising results that can be effectively used for desalination of brackish water and separation of metals from the industrial effluents.
A 3D face shape derived from 2D images may be useful in many applications, such as face recognition, face synthesis and human computer interaction. To do this, we develop a fast 3D Active Appearance Model (3D-AAM) method using depth estimation. The training images include specific 3D face poses which are extremely different from one another. The landmark's depth information of landmarks is estimated from the training image sequence by using the approximated Jacobian matrix. It is added at the test phase to deal with the 3D pose variations of the input face. Our experimental results show that the proposed method can efficiently fit the face shape, including the variations of facial expressions and 3D pose variations, better than the typical AAM, and can estimate accurate 3D face shape from images.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.10
/
pp.3729-3749
/
2021
At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.439-442
/
2007
강인한 얼굴 인식 시스템을 만들기 위해서는 안경의 제거가 중요한 요소이다. 이를 위해서는 뛰어난 성능의 안경 검출 방법이 필수적이다. 본 논문에서는 안경의 유무 판단에 관한 새로운 방법을 제안한다. 영상은 조명 부분과 반사부분의 곱으로 이루어져 있다. 얼굴의 경우 안경 고유의 반사계수와 얼굴 고유의 반사계수가 다른 점에 착안하여 anisotropic smoothing 방법을 이용하여 입력 얼굴 영상에서의 반사 부분을 얻고, 이를 이용하여 안경의 반사 부분을 얼굴의 반사부분에서 검출한 뒤 이진화한다. 이후, 이진화 된 안경 픽셀 수를 이용하여 안경의 유무를 판단한다.
The Active Appearance Model (AAM) is a class of deformable models, which, in the segmentation process, integrates the priori knowledge on the shape and the texture and deformation of the structures studied. This model in its sequential form is computationally intensive and operates on large data sets. This paper presents another framework to implement the standard version of the AAM model. We suggest a distributed and parallel approach justified by the characteristics of the model and their potentialities. We introduce a schema for the representation of the overall model and we study of operations that can be parallelized. This approach is intended to exploit the benefits build in the area of advanced image processing.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.386-389
/
2007
EBGM은 자세와 포즈, 조명 변화에 강인한 얼굴 인식 기법중의 하나이다. 하지만 EBGM을 통한 얼굴 인식 시스템은 얼굴의 특징점을 추출하기 위해 주어지는 초기값에 상당한 영향을 받는다. 이러한 문제를 해결하기 위해서 얼굴의 윤곽 추출에 우수한 성능을 보이는 AAM을 통하여 EBGM의 초기값을 주고 EBGM을 통하여 개선하는 방법을 제안하였었다. 본 논문에서는 등록자마다 다른 경계값을 갖는 방법을 제안한다. 기존의 경계값에 비해 성능의 향상이 어느 정도 이뤄지는가에 대해 다룰 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.