• Title/Summary/Keyword: A6XXX Al Alloy

Search Result 9, Processing Time 0.022 seconds

The Thickness of Recrystallization Layer during Aluminum Extrusion Process (알루미늄 압출공정변수에 따른 재결정층 두께 변화)

  • Oh K. H.;Min Y. S.;Park S. W.;Jang G. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.266-269
    • /
    • 2005
  • The effect of exit temperature on the thickness of recrystallization layer during Al extrusion process was investigated. The recrystallization layer of an extruded Al alloy is an important feature of the product in a wide range of applications, particularly those within the automotive industry. The thicker recrystallized layer in the Al alloys can give rise to a number of problems including reduced fatigue resistance and orange peel during cold forming. But the interaction of extrusion process variables with the thickness of recrystallization layer is poorly understood, and there is limited information available regarding the role of the main hot extrusion variables. Using the 3650 US ton extrusion press, this paper describes the effect of the main process variables such as billet temperature, ram speed, and exit temperature on the thickness of recrystallization layer for the A6XXX Al alloy.

  • PDF

6xxx Series Al Alloy Sheets with High Formability Produced by Twin-roll Strip Casting and Asymmetric Rolling (쌍롤 박판주조법 및 이속압연으로 제조한 고성형성 6xxx계 Al 합금 판재)

  • Kim, Hong-Kyu;Cho, Jae-Hyung;Kim, Hyoung-Wook;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.503-509
    • /
    • 2012
  • We report on the feasibility of producing 6xxx series Al alloy sheets using a combination of twin-roll strip casting and asymmetric rolling. The Al alloy sheets produced in this study exhibited an excellent formability ($\bar{r}=1.2$, ${\Delta}r=0.17$) and mechanical properties (${\sigma}_{TS}{\sim}260MPa$, ${\varepsilon}>30%$), which cannot be feasibly obtained via the conventional technique based on ingot casting and conventional rolling. The enhanced formability as evaluated in terms of $\bar{r}$ and ${\Delta}r$ was clarified by examining the evolution of textures associated with strip casting and subsequent thermo-mechanical treatments. The evaluation of the formability leads us to conclude that the combined technique based on strip casting and asymmetric rolling is a feasible process for enhancing the formability of Al alloy sheets to a level beyond which the conventional technique can reach.

The Fabrication of High Strength 7XXX Aluminum Alloy Powders by Centrifugal Disc Atomization (원심분무법에 의한 고강도 7XXX 알루미늄 합금 분말의 제조)

  • Lee, Tae-Hang;Im, Seong-Moo;Cho, Sung-Suk
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.528-537
    • /
    • 1990
  • 7XXX aluminum alloy powders produced by the self-manufactured rotating disc atomizer were investigated to determine the influence of the atomization parameters on the particle size distributions in air atmosphere. The particle size distributions are almost always bimodal with the dominant mode on the large particle size. Average powder size of 7XXX aluminum alloy is $74/{\mu}m~125/{\mu}m$ when melt is poured with the rate of 9g /sec at 730$^{\circ}C$ on a rotating disc of 30㎜ diameter at 6300rad/sec. The mass of finer particle increased when disc diameter, angular velocity, pouring temperature increased and pouring rate decreased. The powder shapes of bimodal change from acicular to tear-drop and from tear-drop to ligament with increasing powder size. Powder shape was determined by the atomization mechanism and oxidation in liquid state. Microstructure of powders appeared to be cell and cellular dendrite. The SDAS of Al-7.9wt%Zn-2.4wt%Mg-1.5wt%Cu-0.9wt%Ni Powders is $0.8{\mu}m~1.0{\mu}m$ for the powders of $size+44{\mu}m~53{\mu}m$ and $1.6{\mu}m∼1.8{\mu}m$ for the powders of $size+105{\mu}m~125{\mu}m$, repectively.

  • PDF

The Effect of Alloying Elements on the Tensile Property of Al-Mg-Si Alloy (Al-Mg-Si계 합금의 인장 특성에 미치는 합금 원소의 영향)

  • Park J. H.;Kwon Y.-N.;Lee Y. S.;Kang S. W.;Lee B. G.;Lee J. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.234-237
    • /
    • 2004
  • As an automotive industry's demand for lighter materials gets bigger and bigger, a lot of new strength Al alloys have been developed recently. In the present study, Al 6xxx series alloys were designed to get the strength level of 350MPa with the elongation of $12\%$. For that purpose, three alloy systems were selected based on the thermodynamics calculation. The effect of both $Mg_{2}Si$ precipitate and excess Si amount on the newly designed alloys was investigated. Also, heat treatment procedure was studied to optimize the mechanical properties.

  • PDF

Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy (냉간압연된 Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn계 합금의 미세조직 및 기계적 특성)

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.246-251
    • /
    • 2020
  • The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.

A Study on the Friction and Wear Characteristic of TiAlN and CrAlN Coating on the SKD61 Extrusion Mold Steel for 6xxx Aluminum Alloy (6xxx계 알루미늄합금의 압출 금형용 SKD61 강재에 증착된 TiAlN, CrAlN 박막의 마찰.마모에 대한 연구)

  • Kim, Min-Suck;Kho, Jin-Hyun;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.278-282
    • /
    • 2010
  • In this research, the friction and wear characteristic behaviors of coating materials of TiAlN and CrAlN were investigated. The wear test was conducted in air and un-lubricated state using the reciprocating friction wear tester. Temperature were 50 and $120^{\circ}C$, and load were 3, 7, and 11 kgf for tests. By comparing the coefficient of friction and observing the wear microstructure, the friction and wear characteristic behaviors of TiAlN and CrAlN coating layers on SKD61 were investigated. The coefficient of friction of CrAlN coating was lower than that of TiAlN at all conditions. Therefore, CrAlN was suggested to be more advantageous coating than TiAlN for the extrusion mold of aluminum.

Effects of Fe, Mn Contents on the Al Alloys and STD61 Steel Die Soldering (Al 합금과 STD61강의 소착에 미치는 첨가원소 Fe, Mn의 영향)

  • Kim, Yu-Mi;Hong, Sung-Kil;Choi, Se-Weon;Kim, Young-Chan;Kang, Chang-Seog
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.169-173
    • /
    • 2012
  • Recently, various attempts to produce a heat sink made of Al 6xxx alloys have been carried out using die-casting. In order to apply die-casting, the Al alloys should be verified for die-soldering ability with die steel. It is generally well known that both Fe and Mn contents have effects on decreasing die soldering, especially with aluminum alloys containing substantial amounts of Si. However, die soldering has not been widely studied for the low Si aluminum (1.0~2.0wt%) alloys. Therefore, in this study, an investigation was performed to consider how the soldering phenomena were affected by Fe and Mn contents in low Si aluminum alloys. Each aluminum alloy was melted and held at $680^{\circ}C$. Then, STD61 substrate was dipped for 2 hr in the melt. The specimens, which were air cooled, were observed using a scanning electron microscope and were line analyzed by an electron probe micro analyzer. The SEM results of the dipping soldering test showed an Al-Fe inter-metallic layer in the microstructure. With increasing Fe content up to 0.35%, the Al-Fe inter-metallic layer became thicker. In Al-1.0%Si alloy, the additional content of Mn also increased the thickness of the inter-metallic layer compared to that in the alloy without Mn. In addition, EPMA analysis showed that Al-Fe inter-metallic compounds such as $Al_2Fe$, $Al_3Fe$, and $Al_5Fe_2$ formed in the die soldering layers.

A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process (고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구)

  • Jeon, H.W.;Suh, C.H.;Oh, S.G.;Kwon, T.H.;Kang, G.P.;Yook, H.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.

Effect of Fabrication Processes on the Fatigue and Fracture Toughness of 7XXX Series Aluminum Forgings (7XXX계 단조재의 피로 및 파괴인성에 미치는 제조공정의 영향)

  • Lee, O.H.;Lim, J.K.;Song, K.H.;Son, Y.I.;Eun, I.S.;Shin, D.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.161-168
    • /
    • 1996
  • The purpose of this study is to investigate the effect of impurity level and fabrication processes on the strength, fracture toughness and fatigue resistance of 7075, 7050 and 7175 high strength aluminum forgings. It has been verified that plane strain fracture toughness and fatigue characteristics of a specially processed 7175S-T74 alloy is superior to a conventionally processed 7075-T6/T73, 7050-T74 and 7175-T74 alloys. These beneficial effects primarily arise from two view points, i.e., the effect of reducing the impurity level of iron and silicon has significantly diminished the size and volume fraction of second phase particles such as $Al_7Cu_2Fe$ and $Mg_2Si$. Futher reduction of the amount of nonequilibrium second phase particles has been observed by applying a special fabrication process.

  • PDF