• Title/Summary/Keyword: A549 cell apoptosis

Search Result 211, Processing Time 0.025 seconds

Preparation of Lysine-Coated Magnetic Fe2O3 Nanoparticles and Influence on Viability of A549 Lung Cancer Cells

  • Ma, Yu-Hua;Peng, Hai-Ying;Yang, Rui-Xia;Ni, Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8981-8985
    • /
    • 2014
  • Objective: To explore the effect of lysine-coated oxide magnetic nanoparticles (Lys@MNPs) on viability and apoptosis of A549 lung cancer cells. Methods: Transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Zeta potentiometric analyzer were employed to characterize Lys@MNPs. Then Lys@MNPs and lung cancer A549 cells were co-cultured to study the effect of Lys@MNPs on cell viability and apoptosis. The pathway of Lys@MNPs entering A549 cells was detected by TEM and cell imaging by 1.5 T MRI. Results: Lys@MNPs were 10.2 nm in grain diameter, characterized by small size, positive charge, and superparamagnetism. Under low-dose concentration of Lys@MNPs (< $40{\mu}g/mL$), the survival rate of A549 cells was decreased but remained higher than 95% while under high-dose concentration ($100{\mu}g/mL$), the survival ratewas still higher than 80%, which suggested Lys@MNPs had limited influence on the viability of A549 cells, with good biocompatibility and and no induction of apoptosis. Moreover, high affinity for cytomembranes, was demonstrated presenting good imaging effects. Conclusion: Lys@MNPs can be regarded as a good MRI negative contrast agents, with promising prospects in biomedicine.

The proteasome inhibition enhances apoptosis by P53 expression and the dissipation of mitochondrial transmembrane potential in TRAIL-resistant lung cancer cells (Proteasome 억제에 의한 P53의 발현과 미토콘드리아 막 전압의 소실로 TRAIL에 저항하는 폐암세포의 사멸 강화)

  • Seol, Jae-Won;Park, Sang-Youel
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The ubiquitin-proteasome mediated protein degradation pathway plays an important role in regulating both cell proliferation and cell death. Proteasome inhibitors are well known to induce apoptosis in various human cancer cell lines. We investigated the effect of combined treatment with proteasome inhibitor and TRAIL, and a possible mechanism of the enhancing apoptosis by the both treatment, on TRAIL-resistant non-small cell lung cancer. A549 cells were exposed to the N-Acetyl-Leu-Leu-Norleu-al (ALLN) as a proteasome inhibitor and then treated with recombinant TRAIL protein. In A549 cells under proteasome inhibition conditions by pretreatment with ALLN, TRAIL treatment significantly decreased cell viability compared to that ALLN and TRAIL alone treatment. Also, the both treatment induced cell damage through DNA fragmentation and p53 expression. In addition, the combined treatment of both markedly increased caspase-8 activation, especially the exposure for 2 h, and Bax expression and induced the dissipation of mitochondrial transmembrane potential in A549 cells. Taken together, these findings showed that proteasome inhibition by ALLN enhanced TRAIL-induced apoptosis via DNA degradation by activated P53 and mitochondrial transmembrane potential loss by caspase-8 activation and bax expression. Therefore, our results suggest that proteasome inhibitor may be used a very effectively chemotherapeutic agent for the tumor treatment, especially TRAIL-resistant tumor cell.

Induction of Cell Cycle Arrest, Apoptosis, and Reducing the Expression of MCM Proteins in Human Lung Carcinoma A549 Cells by Cedrol, Isolated from Juniperus chinensis

  • Yun, Hee Jung;Jeoung, Da Jeoung;Jin, Soojung;Park, Jung-ha;Lee, Eun-Woo;Lee, Hyun-Tai;Choi, Yung Hyun;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.918-926
    • /
    • 2022
  • Proteins related to DNA replication have been proposed as cancer biomarkers and targets for anticancer agents. Among them, minichromosome maintenance (MCM) proteins, often overexpressed in various cancer cells, are recognized both as notable biomarkers for cancer diagnosis and as targets for cancer treatment. Here, we investigated the activity of cedrol, a single compound isolated from Juniperus chinensis, in reducing the expression of MCM proteins in human lung carcinoma A549 cells. Remarkably, cedrol also strongly inhibited the expression of all other MCM protein family members in A549 cells. Moreover, cedrol treatment reduced cell viability in A549 cells, accompanied by cell cycle arrest at the G1 phase, and enhanced apoptosis. Taken together, this study broadens our understanding of how cedrol executes its anticancer activity while demonstrating that cedrol has potential application in the treatment of human lung cancer as an inhibitor of MCM proteins.

Apoptotic Effects of Junglyeokdaejosape-tang and Junglyeok-tang on A549 lung Cancer Cells (A549 폐암 세포주에 대한 정력대조사폐탕 및 정력탕의 Apoptosis 효과)

  • Yu Byeong-Gil;Kim Myung-Dong;Hwang Tae-Jun;Yoo Yeong-Min;Lee Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1204-1212
    • /
    • 2005
  • Lung cancer is one of the common malignant tumors in the world. It occurs more increasingly due to the serious air pollution, heavy smoking, expoure to ionized radiation, pollution with heavy metal, and owing to well advanced diagnostic skill, etc. Also lung cancer has the limitation of medical care because metastasis is already shown up in more than half cases when it is first detected through medical examination. Although it is treated with chemoradiation, the rate of deaths from lung cancer is high as well, because blood has a lot of toxicity which give side effects. So it has a low rate of cure. So, the ways of various treatment is being researched to raise the rate of care and decrease the side effects recently, and one of the results is inducing apoptosis which makes use of molecularbiologic diagnosis of lung cancer's cell and using oriental medicine drugs. The purpose of this study is whether apoptosis would happen on the human lung carcinoma cell by treated with Junglyeokdaejosape-tang, Junglyeok-tang Junglyeokdaejosape-tang and Junglyeok-tang has been prescribed for cough, chest pain, and many other similar cases. Cough and chest pain is shown in early lung cancer. That is why we used these prescriptions. Apoptosis happend on the human lung carcinoma A549 cells treated with Jeongiyeokdaejosapye-tang, Jeonglyeok-tang. The concentration-dependent inhibition of cell viability was observed and apoptosis was confirmed by DNA fragmentation. Bcl-2 and COX-2 mRNA expression decreased, but Bax mRNA expression increased, so it was identified with the case of indomethacin known to enhance apoptotic DNA fragmentation. Also expression of the p21, p53, cyclin E, cyclin D1, cytochrome c, caspase-3, and caspase-9 protein increased and the activity of caspase-3 increased, as well. Last, fragmentation of the PARP was shown. The previous and present results indicated that apoptosis of A549 cells by above-mentioned drugs is associated with the blockage of G1/S progression.

The Proteasome Inhibitor MG132 Sensitizes Lung Cancer Cells to TRAIL-induced Apoptosis by Inhibiting NF-κ Activation (폐암세포주에서 NFκ 활성 억제를 통한 Proteasome 억제제 MG132의 TRAIL-유도성 Apoptosis 감작 효과)

  • Seo, Pil Won;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.476-486
    • /
    • 2008
  • Background: TRAIL (TNF-related apoptosis inducing ligand) is a newly identified member of the TNF gene family which appears to have tumor-selective cytotoxicity due to the distinct decoy receptor system. TRAIL has direct access to caspase machinery and induces apoptosis regardless of p53 phenotype. Therefore, TRAIL has a therapeutic potential in lung cancer which frequently harbors p53 mutation in more than 50% of cases. However, it was shown that TRAIL also could activates $NF-{\kappa}B$ in some cell lines which might inhibit TRAIL-induced apoptosis. This study was designed to investigate whether TRAIL can activate $NF-{\kappa}B$ in lung cancer cell lines relatively resistant to TRAIL-induced apoptosis and inhibition of $NF-{\kappa}B$ activation using proteasome inhibitor MG132 which blocks $I{\kappa}B{\alpha}$ degradation can sensitize lung cancer cells to TRAIL-induced apoptosis. Methods: A549 (wt p53) and NCI-H1299 (null p53) lung cancer cells were used and cell viability test was done by MTT assay. Apoptosis was confirmed with Annexin V assay followed by FACS analysis. To study $NF-{\kappa}B$-dependent transcriptional activation, a luciferase reporter gene assay was used after making A549 and NCI-H1299 cells stably transfected with IgG ${\kappa}-NF-{\kappa}B$ luciferase construct. To investigate DNA binding of $NF-{\kappa}B$ activated by TRAIL, electromobility shift assay was used and supershift assay was done using anti-p65 antibody. Western blot was done for the study of $I{\kappa}B{\alpha}$ degradation. Results: A549 and NCI-H1299 cells were relatively resistant to TRAIL-induced apoptosis showing only 20~30% cell death even at the concentration 100 ng/ml, but MG132 ($3{\mu}M$) pre-treatment 1 hour prior to TRAIL addition greatly increased cell death more than 80%. Luciferase assay showed TRAIL-induced $NF-{\kappa}B$ transcriptional activity in both cell lines. Electromobility shift assay demonstrated DNA binding complex of $NF-{\kappa}B$ activated by TRAIL and supershift with p65 antibody. $I{\kappa}B{\alpha}$ degradation was proven by western blot. MG132 completely blocked both TRAIL-induced $NF-{\kappa}B$ dependent luciferase activity and DNA binding of $NF-{\kappa}B$. Conclusion: This results suggest that inhibition of $NF-{\kappa}B$ can be a potentially useful strategy to enhance TRAIL-induced tumor cell killing in lung cancer.

The anti-cancer effects of $Ampelopsisradix$ Extract (AE) on A549 cells - The role of Bcl-2 family protein on the AE-induced apoptosis - (폐암세포에서 백렴의 항암효능연구 - Bcl-2 family 단백조절을 통한 자가사멸 -)

  • Nam, Hye-Seon;Cho, Min-Kyung
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Objective : The aim of this study is to evaluate anti-cancer effects of $Ampelopsisradix$ Extract (AE) on human lung cancer A549 cells. Method : The apoptotic activities and cell growth arrest activities of AE were measured using 3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The molecules involved in apoptotic process were assessed by western blotting. Result : Treatment of AE potently reduced cell viability in a dose-dependent manner in A549 cells. AE (100-500 ${\mu}g/m{\ell}$) resulted in apoptosis via activation of caspase 9 following PARP cleavage in a time-and dose-dependent manner. The levels of Bax and Bad levels were increased by AE with a concomitant decrease of Bcl-xL. In addition, AE at the low dose (30 ${\mu}g/m{\ell}$) significantly inhibited cell growth in the presence of serum. Conclusion : AE has the potential as a therapeutic agent against lung cancer.

An Experimental Study on Apoptosis of Cultivated Wild Ginseng Distilled Herbal Acupuncture by controlled pH and Electrolyte (pH 및 전해질 조절 산양산삼(山養山蔘) 증류약침(蒸溜藥鍼)의 Apoptosis에 관(關)한 실험적(實驗的) 연구(硏究))

  • Chu, Ching sheng;Lee, Sun-gu;Kwon, Ki-rok
    • Journal of Acupuncture Research
    • /
    • v.21 no.6
    • /
    • pp.1-17
    • /
    • 2004
  • Objective : To compare and examine how adjustment of pH and electrolyte can affect the efficacy of cultivated wild ginseng distilled herbal acupuncture, we've administered pure cultivated wild ginseng distilled herbal acupuncture and pH and electrolyte adjusted cultivated wild ginseng distilled herbal acupuncture on A549 human lung cancer lines. Then mRNA and proteins which take parts in apoptosis were examined. Methods : Pure cultivated wild ginseng distilled herbal acupuncture treated group was set as the control group and pH and electrolyte adjusted cultivated wild ginseng distilled herbal acupuncture groups were administered on A549 human lung cancer lines. Cell toxicity was carefully examined and from the analysis of DNA fragmentation, RT-PCR, and Western blot, manifestation of mRNA and proteins which are associated with apoptosis were inspected. Results : The following results were obtained on apoptosis of A549 human lung cancer lines after administering pH and electrolyte adjusted cultivated wild ginseng distilled herbal acupuncture. 1. Measuring cell toxicity of lung cancer cells, higher cell toxicity was detected at pH and electrolyte adjusted groups and the results were concentration dependent. 2. Through DNA fragmentation, we were able to confirm cell destruction in all groups. 3. Experiment groups treated with cultivated wild ginseng distilled herbal acupuncture showed inhibition of Bcl-2 and COX-2 at mRNA and Protein level, whileas increase of Bax was shown. 4. Manifestation of p21, p53, Cyclin E, and Cyclin D1 were confirmed in all groups. 5. Extrication of Cytochrome C was detected at all groups, as well as increased activity of the enzyme caspase-3 and caspase-9, and PARP fragmentation were confirmed. Conclusions : From the above results, we can carefully deduce cell destruction of A549 human lung cancer lines were induced by Apoptosis. At the same concentration level, cell destruction efficacy was better with adjusted pH and electrolyte. Cultivated wild ginseng distilled herbal acupuncture also showed decrease of Bcl-2 and COX-2, as well as increase of Bax. Since cultivated wild ginseng distilled herbal acupuncture increases manifestation of p21, p53, Cyclin E, and Cyclin D1, it affects cellular cycle and through these phenomena, we can consider extrication of Cytochrome C, increase of caspase, and PARP fragmentation are the results.

  • PDF

Viriditoxin Induces G2/M Cell Cycle Arrest and Apoptosis in A549 Human Lung Cancer Cells

  • Park, Ju Hee;Noh, Tae Hwan;Wang, Haibo;Kim, Nam Deuk;Jung, Jee H.
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.282-288
    • /
    • 2015
  • Viriditoxin is a fungal metabolite isolated from Paecilomyces variotii, which was derived from the giant jellyfish Nemopilema nomurai. Viriditoxin was reported to inhibit polymerization of FtsZ, which is a key protein for bacterial cell division and a structural homologue of eukaryotic tubulin. Both tubulin and FtsZ contain a GTP-binding domain, have GTPase activity, assemble into protofilaments, two-dimensional sheets, and protofilament rings, and share substantial structural identities. Accordingly, we hypothesized that viriditoxin may inhibit eukaryotic cell division by inhibiting tubulin polymerization as in the case of bacterial FtsZ inhibition. Docking simulation of viriditoxin to ${\beta}-tubulin$ indicated that it binds to the paclitaxel-binding domain and makes hydrogen bonds with Thr276 and Gly370 in the same manner as paclitaxel. Viriditoxin suppressed growth of A549 human lung cancer cells, and inhibited cell division with G2/M cell cycle arrest, leading to apoptotic cell death.

Induction of Apoptotic Cell Death by Healthful Decoction Utilizing Phellinus Linteus in Human Lung Carcinoma Cells (상황을 이용한 보건기능 개선제의 인체폐암세포 apoptosis 유발에 관한 연구)

  • Park Cheol;Lee Yong Tae;Kang Kyung Hwa;choi Byung Tae;Jeong Young Kee;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.759-766
    • /
    • 2004
  • In the present study, we investigated the effects of aqueous extract of the healthful decoction utilizing Phellinus linteus (HDPL) on the cell growth of human lung carcinoma tumor cell line A549. Exposure of A549 cells to HDPL resulted in growth inhibition and induction of apoptosis in a dose-dependent manner as measured by hemocytometer counts, fluorescence microscopy and flow cytometric analysis. This increase in apoptosis was associated with inhibition and/or degradation of apoptotic target proteins such as poly(ADP-ribose) polymerase (PARP), b-catenin and phospholipase C- 1 (PLC- 1) protein. HDPL treatment induced the down-regulation of anti-apoptotic Bcl-2 expression, an anti-apoptotic gene, however, the level of Bax. a pro-apoptotic gene, was increased by HDPL treatment. In addition, HDPL-induced apoptotis of A549 cells was connected with activation of caspase-3 and caspase-9 protease in a dose-dependent manner, however, the levels of inhibitor of apoptosis proteins family were remained unchanged. Taken together, these results indicated that the anti-proliferative effects of HDPL were associated with the induction of apoptotic cell death through regulation of several major growth regulatory gene products such as Bcl-2 family expression and caspase protease activity, and HDPL may have therapeutic potential in human lung cancer.

Apoptosis and Autophagy Induction of A549 Human Lung Cancer Cells by Methylene Chloride Extracts of Morus alba L. (A549 인체폐암세포에서 상백피 메틸렌클로라이드 추출물에 의한 Apoptosis 및 Autophagy 유발)

  • Park, Shin-Hyoung;Chi, Gyoo-Yong;Choi, Yung-Hyun;Eom, Hyun-Sup
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.942-949
    • /
    • 2010
  • Morus alba L., a kind of Oriental medicinal herbs, has been traditionally used to treat pulmonary asthma and congestion. According to recent studies, extracts of M. alba L. have showed anti-inflammatory, anti-oxidant, anti-tumor and hypoglycemic effects. However, the molecular mechanisms on how it acts as a death-inducer in cancer cells have not been fully understood. In this study, we investigated the cell death effects of methylene chloride extracts of M. alba L. (MEMA) in A549 human lung carcinoma cells. It was shown that MEMA induced the apoptotic cell death proved by increased sub-G1 phase cell population, apoptotic body formation and chromatin condensation. MEMA treatment induced the expression of death receptor-related proteins such as death receptor (DR) 4, DR5, Fas and FasL, which further triggered the activation of caspase-8 and the cleavage of Bid in a concentration-dependent manner. However, MEMA reduced anti-apoptotic Bcl-2 and Bcl-xL expression which contributed to the loss of mitochondrial membrane potential (MMP), and the activations of caspase-9 and caspase-3. Meanwhile, the morphological study indicated a characteristic finding of autophagy, such as the formation of autophagosomes in MEMA-treated cells. Furthermore, markers of autophagy, namely, the increased MDC-positive cells, conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II and increased beclin-1 accumulation, were observed. Taken together, these findings demonstrated that MEMA triggered both autophagy and apoptosis in A549 cancer cells. They might suggest that M. alba L. could be a prospective clinical application to treat human lung cancers.