Browse > Article
http://dx.doi.org/10.20307/nps.2015.21.4.282

Viriditoxin Induces G2/M Cell Cycle Arrest and Apoptosis in A549 Human Lung Cancer Cells  

Park, Ju Hee (College of Pharmacy, Pusan National University)
Noh, Tae Hwan (College of Pharmacy, Pusan National University)
Wang, Haibo (College of Pharmacy, Pusan National University)
Kim, Nam Deuk (College of Pharmacy, Pusan National University)
Jung, Jee H. (College of Pharmacy, Pusan National University)
Publication Information
Natural Product Sciences / v.21, no.4, 2015 , pp. 282-288 More about this Journal
Abstract
Viriditoxin is a fungal metabolite isolated from Paecilomyces variotii, which was derived from the giant jellyfish Nemopilema nomurai. Viriditoxin was reported to inhibit polymerization of FtsZ, which is a key protein for bacterial cell division and a structural homologue of eukaryotic tubulin. Both tubulin and FtsZ contain a GTP-binding domain, have GTPase activity, assemble into protofilaments, two-dimensional sheets, and protofilament rings, and share substantial structural identities. Accordingly, we hypothesized that viriditoxin may inhibit eukaryotic cell division by inhibiting tubulin polymerization as in the case of bacterial FtsZ inhibition. Docking simulation of viriditoxin to ${\beta}-tubulin$ indicated that it binds to the paclitaxel-binding domain and makes hydrogen bonds with Thr276 and Gly370 in the same manner as paclitaxel. Viriditoxin suppressed growth of A549 human lung cancer cells, and inhibited cell division with G2/M cell cycle arrest, leading to apoptotic cell death.
Keywords
Viriditoxin; Paecilomyces variotii; FtsZ; Tubulin; G2/M cell cycle arrest; Apoptosis; A549 cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu, J.; Li, F.; Kim, E. L.; Hong, J. K.; Jung, J. H. Nat. Prod. Sci. 2013, 19, 61-65.
2 Wang, J.; Galgoci, A.; Kodali, S.; Herath, K. B.; Jayasuriya, H.; Dorso, K.; Vicente, F.; Gonzalez, A.; Cully, D.; Bramhill, D.; Singh, S. J. Biol. Chem. 2003, 278, 44424-44428.   DOI
3 Wong, D. T.; Hamill, R. L. Biochem. Biophys. Res. Commun. 1976, 71, 332-338.   DOI
4 Lowe, J.; Amos, L. A. Nature 1998, 391, 203-206.   DOI
5 Tian, W.; Xu, D.; Deng, Y. C. Pharmazie 2012, 67, 811-816.
6 Erickson, H. P. Cell 1995, 80, 367-370.   DOI
7 Bi, E. F.; Lutkenhaus, J. Nature 1991, 354, 161-164.   DOI
8 Chen, Y.; Erickson, H. P. J. Biol. Chem. 2005, 280, 22549-22554.   DOI
9 Popp, D.; Iwasa, M.; Erickson, H. P.; Narita, A.; Maeda, Y.; Robinson, R. C. J. Biol. Chem. 2010, 285, 11281-11289.   DOI
10 Anderson, D. E.; Kim, M. B.; Moore J. T.; O'Brien, T. E.; Sorto, N. A.; Grove, C. I.; Lackner, L. L.; Ames, J. B.; Shaw, J. T. ACS Chem. Biol. 2012, 7, 1918-1928.   DOI
11 Lappchen, T.; Pinas, V. A.; Hartog, A. F.; Koomen, G. J.; Schaffner-Barbero, C.; Andreu, J. M.; Trambaiolo, D.; Lowe, J.; Juhem, A.; Popov, A. V; den Blaauwen, T. Chem. Biol. 2008, 15, 189-199.   DOI
12 Foss, M. H.; Eun, Y. J.; Grove, C. I.; Pauw, D. A.; Sorto, N. A.; Rensvold, J. W.; Pagliarini, D. J.; Shaw, J. T.; Weibel, D. B. Med. Chem. Commun. 2013, 4, 112-119.   DOI
13 Gupta, K. K.; Bharne, S. S.; Rathinasamy, K.; Naik, N. R.; Panda, D. FEBS J. 2006, 273, 5320-5332.   DOI
14 Rai, D.; Singh, J. K.; Roy, N.; Panda, D. Biochem. J. 2008, 410, 147-155.   DOI
15 Wang, J.; Galgoci, A.; Kodali, S.; Herath, K. B.; Jayasuriya, H.; Dorso, K.; Vicente, F.; Gonzalez, A.; Cully, D.; Bramhill, D.; Singh, S. J. Biol. Chem. 2003, 278, 44424-44428.   DOI
16 Hsiao, C. J.; Hsiao, G.; Chen, W. L.; Wang, S. W.; Chiang, C. P.; Liu, L. Y.; Guh, J. H.; Lee, T. H.; Chung, C. L. J. Nat. Prod. 2014, 77, 758-765.   DOI
17 Zhu, Z.; Sun, H.; Ma, G.; Wang, Z.; Li, E.; Liu, Y.; Liu, Y. Int. J. Mol. Sci. 2012, 13, 2025-2035.   DOI
18 Kundu, S.; Kim, T. H.; Yoon, J. H.; Shin, H. S.; Lee, J.; Jung, J. H.; Kim, H. S. Int. J. Oncol. 2014, 45, 2331-2340.   DOI
19 Sun, L.; Simmerling, C.; Ojima, I. ChemMedChem 2009, 4, 719-731.   DOI
20 Lowe, J.; Li, H.; Downing, K. H.; Nogales, E. J. Mol. Biol. 2001, 313, 1045-1057.   DOI