• 제목/요약/키워드: A549 cell apoptosis

Search Result 211, Processing Time 0.025 seconds

H9 Induces Apoptosis via the Intrinsic Pathway in Non-Small-Cell Lung Cancer A549 Cells

  • Kwon, Sae-Bom;Kim, Min-Je;Sun Young, Ham;Park, Ga Wan;Choi, Kang-Duk;Jung, Seung Hyun;Do-Young, Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.343-352
    • /
    • 2015
  • H9 is an ethanol extract prepared from nine traditional/medicinal herbs. This study was focused on the anticancer effect of H9 in non-small-cell lung cancer cells. The effects of H9 on cell viability, apoptosis, mitochondrial membrane potential (MMP; ${\Delta}\psi_{m}$), and apoptosisrelated protein expression were investigated in A549 human lung cancer cells. In this study, H9-induced apoptosis was confirmed by propidium iodide staining, expression levels of mRNA were determined by reverse transcriptase polymerase chain reaction, protein expression levels were checked by western blot analysis, and MMP (${\Delta}\psi_{m}$) was measured by JC-1 staining. Our results indicated that H9 decreased the viability of A549 cells and induced cell morphological changes in a dose-dependent manner. H9 also altered expression levels of molecules involved in the intrinsic signaling pathway. H9 inhibited Bcl-xL expression, whereas Bax expression was enhanced and cytochrome C was released. Furthermore, H9 treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of poly(ADP-ribose) polymerase; the MMP was collapsed by H9. However, the expression levels of extrinsic pathway molecules such as Fas/FasL, TRAIL/TRAIL-R, DR5, and Fas-associated death receptor were downregulated by H9. These results indicated that H9 inhibited proliferation and induced apoptosis by activating intrinsic pathways but not extrinsic pathways in human lung cancer cells. Our results suggest that H9 can be used as an alternative remedy for human non-small-cell lung cancer.

A Cyclin-Dependent Kinase Inhibitor, p16^{INK4A}, Induces Apoptosis in The Human Cancer Cells. (Cyclin-dependent Kinase저해 단백질 p16^{INK4A}의 인체 암세포에서의 세포사멸 유도 활성)

  • 김민경;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Previously, we synthesized a novel Cyclin-dependent kinase inhibitor, MCS-5A. Also, we investigated the involvement of cell cycle regulatory events during MCS-5A-mediated apoptosis in HL-60(+p16/-p53) cells with up-regulation of p16 protein expression. In contrast, apoptosis was not observed in A549(-p16/+p53) cells. Therefore we propose that $p16^{INK4A}$ is a key enzyme for inducing apoptosis. In the present studies, we have explored the mechanism of $p16^{INK4A}$ -mediated cytotoxicity and the role of p16.sup INK4A/ overexpression in the induction of apoptosis in human tumor cells. The tumor suppressor gene $p16^{INK4A}$ is known as a cyclin-dependent kinase inhibitor (CKI) and cell cycle regulator. We expressed wild type $p16^{INK4A}$ in pcDNA3.1 vector and then transfected into non-small cell lung cancer (NSCLC) cell expressing different statue of p16$^{INK4A}$, p53 gene〔A549(-p16/+p53), H1299(-p16/-p53) and HeLa(+pl6/+p53) cell line〕. TUNEL assay (including propidium iodide staining following transfection of these cell line with pcDNA3.1-pl6) indicate that p16$^{INK4A}$-mediated cytotoxicity was associated with apoptosis. This is supported by studies demonstrating an induction of caspase 3 cleavage due to the transfection of A549, H1299 and HeLa cells with pcDNA3.1-pl6. These results suggest that p16$^{INK4A}$ has a new function of inducing apoptosis which is not related with the function of tumor suppressor gene p53.

Ethanolic extract of Condurango (Marsdenia condurango) used in traditional systems of medicine including homeopathy against cancer can induce DNA damage and apoptosis in non small lung cancer cells, A549 and H522, in vitro

  • Sikdar, Sourav;Mukherjee, Avinaba;Boujedaini, Naoual;Khuda-Bukhsh, Anisur Rahman
    • CELLMED
    • /
    • v.3 no.1
    • /
    • pp.9.1-9.10
    • /
    • 2013
  • In traditional systems of medicine including homeopathy, the Condurango extract (Con) is often used to cure stomach cancer mainly, without having any scientific validation of its anti-cancer ability. Con has therefore been tested against non-small-cell lung cancer cells (NSCLC) A549 and NCI-H522 (H522) known to contain the KRAS mutation, making them resistant to most chemotherapeutic agents. As cancer cells generally defy cytotoxicity developed by chemopreventive agents and escape cell death, any drug showing the capability of preferentially killing cancer cells through apoptosis is worth consideration for judicious application. A549 and H522 cells were exposed to $0.35{\mu}g/{\mu}l$ and $0.25{\mu}g/{\mu}l$ of Con, respectively, for 48 h and analysed based on various protocols associated with apoptosis and DNA damage, such as MTT assay to determine cell viability, LDH assay, DNA fragmentation assay, comet assay, and microscopical examinations of DNA binding fluorescence stains like DAPI, Hoechst 33258 and acridine orange/ethidium bromide to determine the extent of DNA damage made in drug-treated and untreated cells and the results compared. Changes in mitochondrial membrane potential and the generation of reactive oxygen species were also documented through standard techniques. Con killed almost 50% of the cancer cells but spared normal cells significantly. Fluorescence studies revealed increased DNA nick formation and depolarized membrane potentials after drug treatment in both cell types. Caspase-3 expression levels confirmed the apoptosis-inducing potential of Con in both the NSCLC lines. Thus, overall results suggest considerable anticancer potential of Con against NSCLC in vitro, validating its use against lung cancer by practitioners of traditional medicine including homeopathy.

Exogenous p53 Upregulated Modulator of Apoptosis (PUMA) Decreases Growth of Lung Cancer A549 Cells

  • Liu, Chun-Ju;Zhang, Xia-Li;Luo, Da-Ya;Zhu, Wei-Feng;Wan, Hui-Fang;Yang, Jun-Ping;Yang, Xiao-Jun;Wan, Fu-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.741-746
    • /
    • 2015
  • Purpose: To investigate the influence of exogenous p53 upregulated modulator of apoptosis (PUMA) expression on cell proliferation and apoptosis in human non-small cell lung cancer A549 cells and transplanted tumor cell growth in nude mice. Materials and Methods: A549 cells were divided into the following groups: control, non-carrier (NC), PUMA (transfected with pCEP4-(HA) 2-PUMA plasmid), DDP ($10{\mu}g/mL$ cisplatin treatment) and PUMA+DDP (transfected with pCEP4-(HA)2-PUMA plasmid and $10{\mu}g/mL$ cisplatin treatment). The MTT method was used to detect the cell survival rate. Cell apoptosis rates were measured by flow cytometry, and PUMA, Bax and Bcl-2 protein expression levels were measured by Western blotting. Results: Compared to the control group, the PUMA, DDP and PUMA+DDP groups all had significantly decreased A549 cell proliferation (p<0.01), with the largest reduction in the PUMA+DDP group. Conversely, the apoptosis rates of the three groups were significantly increased (P<0.01), and the PUMA and DDP treatments were synergistic. Moreover, Bax protein levels significantly increased (p<0.01), while Bcl-2 protein levels significantly decreased (p<0.01). Finally, both the volume and the weights of transplanted tumors were significantly reduced (p<0.01), and the inhibition ratio of the PUMA+DDP group was significantly higher than in the single DDP or PUMA groups. Conclusions: Exogenous PUMA effectively inhibited lung cancer A549 cell proliferation and transplanted tumor growth by increasing Bax protein levels and reducing Bcl-2 protein levels.

Effect of Apoptosis Induction of Ailanthus altissima on Human Lung Carcinoma Cells

  • Hwang, Yu-Jin;Woo, Hye-Im;Kim, Inhye;Park, Dong-Sik;Kim, Jaehyun;Om, Ae-Son;Hwang, Kyung-A
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.91-96
    • /
    • 2011
  • We investigated the inhibitory effects of solvent extracts from Ailanthus altissima in A549 human lung cancer cell. A. altissima has been recognized as a traditional healthy food due to its various biological activities against hypertension, strokes, fever, pain, neuralgia, inflammation, and cancer effects. Recently, it has been reported that the extracts of various wild vegetables show strong anti-cancer properties by induction of apoptosis. However, the mechanisms of their cytotoxicity in human lung cancer cells have been poorly understood. The present study was investigated the effects of solvent extracts from A. altissima on cell growth and apoptosis on A549 human lung cancer cells. A treatment of A. altissima inhibited the growth of A549 cells in a dose-dependent manner by inducing apoptosis. Especially, the chloroform fraction showed the highest anti-cancer effect among five kinds of fractions. And also, induction of apoptosis by chloroform fraction were associated with down-regulation of Bcl-2, and up-regulation of pro-apoptotic Bax expression. From these results, A. altissima may have a therapeutic potential in human lung cancer cells and as a functional food.

Curcumin Inhibits Human Non-small Cell Lung Cancer A549 Cell Proliferation Through Regulation of Bcl-2/Bax and Cytochrome C

  • Li, Yue;Zhang, Shuai;Geng, Jian-Xiong;Hu, Xiao-Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4599-4602
    • /
    • 2013
  • We intended to study the mechanism of the inhibitory action of curcumin on human non-small cell lung cancer A549 cell. The cell growth was determined by CCK-8 assay, and the results indicated that curcumin inhibited the cell proliferation in a concentration dependent manner. And to further confirm the relative anti-cancer mechanism of curcumin, RT-PCR was carried out to analysis the expression of relative apoptotic proteins Bax, Bcl-2. We found that curcumin could up-regulate the expression of Bax but down-regulate the expression of Bcl-2 in A549 cells. In addition, curcumin affect the mitochondrial apoptosis pathway. These results suggested that curcumin inhibited cancer cell growth through the regulation of Bcl-2/Bax and affect the mitochondrial apoptosis pathway.

Apoptosis of Human Lung Carcinoma Cells through the Inhibition of Bcl-2 Expression and Activation of Caspase by Chungjogupae-tang (인체폐암세포에서 Bcl-2 발현저하 및 caspase 활성을 통한 청조구폐탕의 apoptosis 유발에 관한 연구)

  • Cho, In-Joo;Gam, Chul-Woo;Kim, Ki-Tak;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.93-97
    • /
    • 2007
  • We previously reported the anti-proliferative effect of Chungjogupae-tang (CJGPT) in human lung carcinoma A549 cells, which was associated with the induction of cyclin-dependent kinase inhibitor p21 in a tumor suppressor p53-independent manner. CJGPT treatment also resulted in the inhibition of prostaglandin E2 release A549 cells by the down-regulation of cyclooxygenase-2. In the present study, we investigated the pathway of the induction of apoptotic cell death by CJGPT in A549 cells. It was found that CJGPT could inhibit the cell viability and induce the apoptotic cell death of A549 cells in a dose-dependent manner as measured by hemocytometer counts, flow cytometry analysis and agarose gel electrophoresis. Apoptosis of A549 cells by CJGPT was associated with a down-regulation of anti-apoptotic Bcl-2 and inhibitor of apoptosis proteins (IAPs) expression. Additionally, DNA fragmentation by CJGPT was connected with the activation of inhibitor of caspase-activated DNase/DNA fragmentation factor 45 (ICAD/DFF45) protein expression.

Induction of Apoptotic Cell Death by Methanol Extract of Houttuynia cordata Thunb. in A549 Human Lung Carcinoma Cells (어성초 메탄올 추출물에 의한 A549 인체 폐암세포 사멸유도에 관한 연구)

  • Hong, Su-Hyun;Park, Cheol;Hong, Sang-Hoon;Choi, Byung-Tae;Lee, Yong-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1584-1592
    • /
    • 2006
  • Houttuynia cordata Thunb, well known as 'E-Sung-Cho' in Korea, is traditional medicinal plant generally used in Oriental medicine therapy. We previously reported that the water extract of H. cordata inhibited cell proliferation and induced apoptosis in human breast carcinoma cells. In the present study, we investigated the biochemical mechanisms of anti-proliferative effects by the methanol extract of H. cordata (MEHC) in human lung carcinoma A549 cells. It was found that MEHC could inhibit the cell growth in a dose-dependent manner, which was associated with morphological change and apoptotic cell death as determined by formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase cells. Apoptosis of A549 cells by MEHC was also connected with a down-regulation of anti-apoptotic Bcl-2 and inhibitor of apoptosis proteins (IAPs) expression. MEHC treatment induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant inhibition of poly(ADP-ribose) polymerase (PARP), ${\beta}$-catenin and phospholipase (PLC)-${\gamma}$1 protein expression. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of H. cordata.

Induction of Cdk inhibitor p21 and inhibition of cyclooxygenase-2 by resveratrol in human lung carcinoma A549 cells. (Resveratrol에 의한 A549 인체 폐암세포의 증식억제 및 apoptosis 유발에 관한 연구)

  • 김영애;임선영;이숙희;박건영;이원호;최영현
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.800-808
    • /
    • 2004
  • Resveratrol, a phytoalexin found at high levels in grapes and in grape products such as red wine, has been reported to possess a wide range of biological and pharmacological activities including antioxident, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects. According to recent studies, this compound is an effective inhibitor of cell growth in general, triggers partial arrest of the cell cycle and induce apoptosis. In this study, the anti-proliferative effects of resveratrol in A549 human lung carcinoma cells were investigated. It is shown that resveratrol induced the growth inhibition in a time-dependent manner and morphological changes of A549 cells, which were associated with induction of S phase arrest of the cell cycle and apoptotic cell death. The Bcl-$X_L$levels were markedly down-regulated in resveratrol treated cells, however, Bax and Bcl-2 were remained unchanged. Resveratrol treatment induced the proteolytic degradation of Sp-l and proliferating cell nuclear antigen protein, and inhibited the expression of $\beta$-catenin protein. Resveratrol treatment also induced a marked up-regulation of cyclin-dependent kinase (Cdk) inhibitor p21 and inhibited the kinase activities of Cdk2 and Cdk4. In addition, resveratrol treatment inhibited the levels of cyclooxygenase (COX)-2 mRNA and protein, and the release of prostagladin E2 without alteration of COX-1 expression. Taken together, these findings suggest that resveratrol may be a potential chemotherapeutic agent for the control of human lung carcinorma cells.

Cell Cycle Arrest and Cytochrome c-mediated Apoptotic Induction in A549 Human Lung Cancer Cells by MCS-C2, an Analog of Sangivamycin

  • Kang, Jeong-Hwa;Lee, Dong-Keun;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.433-437
    • /
    • 2010
  • In the course of screening for novel modulators of cell cycle progression and apoptosis as anticancer drug candidates, we generated an analog of sangivamycin, MCS-C2, which was elucidated as 4-amino-6-bromo-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidine-5-carboxamide. In the present study, we evaluated the molecular mechanisms of MCSC2-induced cell cycle arrest and apoptosis in A549 human lung cancer cells. To investigate the effects of MCS-C2 on cell cycle progression in A549 cells, we measured the DNA content of A549 cells treated with $5\;{\mu}M$ MCS-C2 using flow cytometry. The analysis revealed an appreciable $G_2$ phase arrest in treated cells. This event was associated with significant upregulation of p53 and $p21^{Cip1}$. In addition, the TUNEL assay was used to examine apoptotic induction in treated cells, and the effects of MCS-C2 on the expression of apoptosis-associated proteins were examined by Western blot. Apoptotic induction in MCS-C2-treated A549 cells was associated with cytochrome c release from mitochondria, which in turn resulted in the activation of caspase-9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). Based on these results, we conclude that MCS-C2 is a candidate therapeutic agent for the treatment of human lung cancer via upregulation and activation of p53.