• 제목/요약/키워드: A549 cell

Search Result 891, Processing Time 0.032 seconds

Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells

  • Yun, Hye Hyeon;Baek, Ji-Ye;Seo, Gwanwoo;Kim, Yong Sam;Ko, Jeong-Heon;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.457-465
    • /
    • 2018
  • The expression of BCL-2 interacting cell death suppressor (BIS), an anti-stress or anti-apoptotic protein, has been shown to be regulated at the transcriptional level by heat shock factor 1 (HSF1) upon various stresses. Recently, HSF1 was also shown to bind to BIS, but the significance of these protein-protein interactions on HSF1 activity has not been fully defined. In the present study, we observed that complete depletion of BIS using a CRISPR/Cas9 system in A549 non-small cell lung cancer did not affect the induction of heat shock protein (HSP) 70 and HSP27 mRNAs under various stress conditions such as heat shock, proteotoxic stress, and oxidative stress. The lack of a functional association of BIS with HSF1 activity was also demonstrated by transient downregulation of BIS by siRNA in A549 and U87 glioblastoma cells. Endogenous BIS mRNA levels were significantly suppressed in BIS knockout (KO) A549 cells compared to BIS wild type (WT) A549 cells at the constitutive and inducible levels. The promoter activities of BIS and HSP70 as well as the degradation rate of BIS mRNA were not influenced by depletion of BIS. In addition, the expression levels of the mutant BIS construct, in which 14 bp were deleted as in BIS-KO A549 cells, were not different from those of the WT BIS construct, indicating that mRNA stability was not the mechanism for autoregulation of BIS. Our results suggested that BIS was not required for HSF1 activity, but was required for its own expression, which involved an HSF1-independent pathway.

Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression

  • Kong, Fanhua;Zhang, Runqi;Zhao, Xudong;Zheng, Guanlin;Wang, Zhou;Wang, Peng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.465-474
    • /
    • 2017
  • The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. The $10{\mu}g/ml$ of Res had no effect on human fetal lung fibroblast MRC-5 cells or on A549 cancer cells and the 5 or $10{\mu}g/ml$ of PA also had no effect on MRC-5 normal cells. PA-L ($5{\mu}g/ml$) and PA-H ($10{\mu}g/ml$) had the growth inhibitory effects in NSCLC cell line A549, and Res increased these growth inhibitory effects. By flow cytometry experiment, after Res ($5{\mu}g/ml$)+PA-H ($10{\mu}g/ml$) treatment, the A549 cells showed the most apoptosic cells compared to other group treatments, and after additional treatment with Res, the apoptosic cells of both two PA concentrations were raised. Res+PA could reduce the mRNA and protein expressions of COX-2, and Res+PA could reduce the COX-2 related genes of VEGF, MMP-1, MMP-2, MMP-9, $NF-{\kappa}B$, Bcl-2, BclxL, procollagen I, collagen I, collagen III and CTGF, $TNF-{\alpha}$, $IL-1{\beta}$, iNOS and raise the TIMP-1, TIMP-2, TIMP-3, $I{\kappa}B-{\alpha}$, p53, p21, caspase-3, caspase-8, caspase-9, Bax genes compared to the control cells and the PA treated cells. From these results, it can be suggested that Res could raise the anticancer effects of PA in A549 cells, thus Res might be used as a good sensitizing agent for PA.

Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro (Vanadate 처리가 종양세포의 방사선 감수성에 미치는 영향)

  • Lee, Myung-Za;Lee, Won-Young
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.129-141
    • /
    • 1994
  • Intracellular ions which have a major role in cellular function have been reported to affect repair of radiation damage. Recently it has been reported that ouabain sensitizes A549 tumor cellls but not CCL-120 normal cells to radiation. Ouabain inhibits the $Na^+-K^+$-pump rapidly thus it increases intracellular Na concentration, Vanadate which is distributed extensively in almost all living organisms is known to be a $Na^+-K^+$-ATPase inhibitors, This study was performed to see any change in radiosensitivity of tumor cell by vanadate and any role of $Na^+-K^+$ATPase in radiosensitization. Experiments have been carried out by pretreatment with vanadate in human cell line(A549, JMG) and mouse cell line(L1210, spleen). For the cell survival MTT assay was performed for A549 and JMC cells and frypan blue dye exclusion test for L120, and spleen cells. Measurements of $Na^+-K^+$-ATPase activity in control, vanadate treated cell, radiation treated cell (9 Gy for A549 and JMG, 2 Gy for L1201, spleen), and combined $10^{-6}M$ vanadate and radiation treated cells were done. The results were summerized as fellows. 1. L1210 cell was most radiosensitive, and spleen cell and JMG cell were intermediate, and A549 cell was least radiosensitive. 2. Mininum or no cytotoxicity was seen with vanadate below concentration of $10^{-6}M$. 3. In A549 cells there was a little change in radiosensitivity with treatment of vanadate. However radiation sensitization was shown in low dose level of radiation i. e. 2- Gy. In JMG cells no change in radiosensitivity was noted. Both L1210 and spleen cell had radiosensitization but change was greater in tumor cell. 4. $Na^+-K^+$-ATPase activity was inhibited significantly in tumor cell by treatment of vanadate. 5. Radiaiton itself inhibited $Na^+-K^+$-ATPase activity of tumor cell with high $Na^+-K^+$-ATPase concention. Increase in radiosensitivity by vanadate was closely associated with orginal $Na^+-K^+$-ATPase contents. From the above results vanadate had little cytotoxicity and it sensitized tumor cells to radiation. Inhibitory effect of vanadate on $Na^+-K^+$-ATPase activity might be one of the contributing factors for radiosensitization to tumor cells which has greater enzyme activity than that of normal cell. It was suggested vanadate could be used as a potential radiosensitizer for tumor cells.

  • PDF

Cytotoxic compounds against adenocarcinoma alveolar epithelial A549 cells from Paeoniae Radix (작약 뿌리에서 분리한 폐포 선암 세포주 A549에 대한 세포독성 화합물)

  • Ji Won Park;Sang-Eun Shin;Haewon Park;Jeong Ah Kim;Eun-Ju Yang;Kyung-Sik Song
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.272-281
    • /
    • 2023
  • It has been known that Paeoniae Radix (PR) contains monoterpene glycosides showing a variety of biological activities such as anti-spasmodic, anti-inflammatory, anti-viral, neuroprotective, and sedative effects. This study aimed to find the cytotoxic compounds isolated from the dichloromethane (CH2Cl2)- and ethyl acetate-soluble fractions of PR. As results, thirteen compounds (1-13) were isolated and the chemical structures were identified. In addition, the human alveolar adenocarcinoma cell line (A549) was treated with isolated compounds to determine the cytotoxic effect via evaluation of cell viability. The reduction of A549 cell viability was shown as following order; gallic acid (8) > (2S)-naringenin (9) > methyl gallate (10)>6'-O-benzoylpaeoniflorin (7) > palmitic acid (3). Especially, 7 did not show the cytotoxicity in the human lung fibroblast cell line (MRC-5). The effect of 7 on the cell viabilities in A549 and MRC-5 is firstly reported in this study. Further study is required to find out the cytotoxic mechanism and the selectivity for the cancer cells of 7 in detail.

Antitumor Activities to Cytotoxicity of Phellinus linteus Ethanol Extract (목질진흙버섯 에탄을 추출물의 세포독성에 따른 항암활성)

  • 한기원;이수원;한광수;이대진;이병의;장원철
    • Toxicological Research
    • /
    • v.19 no.2
    • /
    • pp.147-152
    • /
    • 2003
  • We investigated antitumor activities of the ethanol extract from mushroom Phellinus linteus and Phellinus baumii on mulberry, oak and elm. in vitro test, the ethanol extract of mushroom cultivated on oak of Phellinus linteus showed highest activities about SK-OV-3, HCT15, XF498, SK-MEL-2 and A549. SK-OV-3 cell line showed 100% cytotoxicity in 100 $\mu\textrm{g}$/ml and HCT15 (98.39%), XF498 (89.62%), SK-MEL-2 (84.07%) and A549 (79.92%) cytotoxicity respectively. Also $IC_{50}$ showed 3.99 $\mu\textrm{g}$/ml to SK-OV-3 cell line and HCT15 (4.37 $\mu\textrm{g}$/ml), A549 (5.48 $\mu\textrm{g}$/ml), SK-MEL-2 (6.72 $\mu\textrm{g}$/ml), XF 498 (6.88 $\mu\textrm{g}$/ml). As those results, cultivated oak of Phellinus linteus showed a very low $IC_{50}$ value against SK-OV-3, HCT15, XF498, SK-MEL-2 and A549 cancer cell lines.

Cytotoxicity of Ligularia fischeri Extracts (곰취 추출물의 세포독성 효과)

  • 함승시;이상영;오덕환;정성원;김상헌;정차권;강일준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.987-992
    • /
    • 1998
  • This study was investigated to observe the cytotoxicity effect of Ligularia fischeri extracts against cancer cell lines including human lung carcinoma(A549), human cervix epitheloid carcinoma(HeLa) and human hepatocellular carcinoma(HepG2) using SRB(sulforhodamine B) method. The ethanol and methanol extracts of 1$\mu\textrm{g}$/${mu}ell$ showed approximately 79.2% and 86.4% cytotoxicity effects on HepG2 cell line and the ethyl acetate fracton fractionated from ethanol extracts showed the strongest cytotoxicity effect with 94% inhibition. The inhibitory effect of ethanol extract on HeLa cell line was somewhat low with 50~56% inhibition, but ethyl acetate fraction showed higher cytotoxicity effect with 91% and 91.9% inhibition on the HeLa and A549 cell line. On the contrary, the ethanol and methanol extracts showed the lower inhibition effects on the normal liver cell, WRL68, compared to human cancer cell lines.

  • PDF

Induction of Apoptosis in Arsenic Trioxide-treated Lung Cancer A549 Cells by Buthionine Sulfoximine

  • Han, Yong Hwan;Kim, Sung Zoo;Kim, Suhn Hee;Park, Woo Hyun
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an $IC_{50}$ of more than $50{\mu}m$. Low doses of ATO or BSO ($1{\sim}10{\mu}m$) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (${\Delta}{\Psi}_m$) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.

Cell Cycle Arrest and Cytochrome c-mediated Apoptotic Induction in A549 Human Lung Cancer Cells by MCS-C2, an Analog of Sangivamycin

  • Kang, Jeong-Hwa;Lee, Dong-Keun;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.433-437
    • /
    • 2010
  • In the course of screening for novel modulators of cell cycle progression and apoptosis as anticancer drug candidates, we generated an analog of sangivamycin, MCS-C2, which was elucidated as 4-amino-6-bromo-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidine-5-carboxamide. In the present study, we evaluated the molecular mechanisms of MCSC2-induced cell cycle arrest and apoptosis in A549 human lung cancer cells. To investigate the effects of MCS-C2 on cell cycle progression in A549 cells, we measured the DNA content of A549 cells treated with $5\;{\mu}M$ MCS-C2 using flow cytometry. The analysis revealed an appreciable $G_2$ phase arrest in treated cells. This event was associated with significant upregulation of p53 and $p21^{Cip1}$. In addition, the TUNEL assay was used to examine apoptotic induction in treated cells, and the effects of MCS-C2 on the expression of apoptosis-associated proteins were examined by Western blot. Apoptotic induction in MCS-C2-treated A549 cells was associated with cytochrome c release from mitochondria, which in turn resulted in the activation of caspase-9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). Based on these results, we conclude that MCS-C2 is a candidate therapeutic agent for the treatment of human lung cancer via upregulation and activation of p53.

Anti-proliferative Effects of Bee Venom through Induction of Bax and Cdk Inhibitor p21WAF1/CIP1 in Human Lung Carcinoma Cells (Bax 및 Cdk inhibitor p21WAF1/CIP1 발현 증가에 의한 bee venom의 A549 인체폐암세포 성장억제)

  • Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.167-173
    • /
    • 2005
  • To investigate the possible molecular mechanism (s) of bee venom as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Bee venom treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Bee venom down-regulated the levels of anti-apoptotic genes such as Bcl-2 and Bcl-XS/L, however, the levels of Bax, a pro-apoptotic gene, were up-regulated. Bee venom treatment induced not only tumor suppressor p53 but also cyclin-dependent kinase inhibitor p21WAF1/CIP1 expression in a dose-dependent manner. Furthermore, bee venom treatment induced the down-regulation of telomerase reverse transcriptase mRNA and telomeric repeat binding factor expression of A549 cells, however, the levels of telomerase-associated protein-1 and c-myc were not affected. Taken together, these findings suggest that bee venom-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and bee venom may have therapeutic potential in human lung cancer.

Effect of Embelin on TRAIL Receptor 2 mAb-induced Apoptosis of TRAIL-resistant A549 Non-small Cell Lung Cancer Cells

  • Jiang, Lei;Hao, Jin-Li;Jin, Mu-Lan;Zhang, Yun-Gang;Wei, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6115-6120
    • /
    • 2013
  • Introduction: Some non-small cell lung cancer (NSCLC) tumor cells are insensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -based therapy. This study was conducted to examine the effect of embelin on the sensitivity of the A549 NSCLC cell line to TRAIL receptor2 (TRAILR2) monoclonal antibodies and to investigate the potential mechanisms. Materials and Methods: A549 cells were treated with embelin, TRAILR2 mAb or a combination of both. Cell viability was measured using ATPlite assay and apoptosis rates were determined by flow cytometry with AnnexinV-FITC and propidium iodide staining, with the expression levels of proteins analyzed by Western blotting. Results: The cell survival rate of separate treatments with 100 ng/ml TRAILR2 antibody or 25 uM embelin were $81.5{\pm}1.57%$ and $61.7{\pm}2.84%$, respectively. Their combined use markedly decreased cell viability in A549 cells to $28.1{\pm}1.97%$ (P<0.05). The general caspase inhibitor Z-VAD-FMK could inhibit the embelin-enhanced sensitivity of A549 cells to TRAILR2 mAb ($75.97{\pm}3.17%$)(P<0.05). Both flow cytometry and cell morphological analysis showed that embelin was able to increase TRAIL-induced apoptosis in A549 cells. Combined treatment with embelin and TRAILR2 mAb augmented the activation of initiator caspases and effector caspase. In addition, A549 cells showed increasing levels of TRAILR2 protein and decreasing levels of Bcl-2, survivin and c-FLIP following the treatment with embelin+TRAILR2 mAb. Conclusions: Embelin could enhance TRAIL-induced apoptosis in A549 cells. The synergistic effect of the combination treatment might be due to modulation of multiple components in the TRAIL receptor-mediated apoptotic signaling pathway, including TRAILR2, XIAP, survivin, Bcl-2 and c-FLIP.