• 제목/요약/키워드: A5083-O

검색결과 31건 처리시간 0.032초

응력비의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델 (A Model Estimating the Ratigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress ratio)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • 제12권3호
    • /
    • pp.82-89
    • /
    • 1994
  • In this paper the effect of stress ratio on the fatigue crack growth rate of aluminum alloy A5083-O was examined. The fatigue tests were carried out using CCT (center cracked tension) specimens and CT(compact tension) specimens which were subjected to 0.5 and -1.0 stress ratio respectively. The obtained results are as follows; 1) The $\DeltaK_{th}$ as the function of stress ratio R was introduced in evaluating the fatigue crack growth rate of A5083-O. 2) A new model evaluating the effect of stress ratio on the fatigue crack growth rate was developed over the region of low and high propagation rate.

  • PDF

이종재 Al5083-O/DP590 마찰교반점용접시 툴의 삽입깊이(Plunge Depth)가 용접성에 미치는 영향 (Effect of Tool Plunge Depth on Weldability of Dissimilar Al5083-O/DP590 Friction Spot Joint)

  • 정수옥;방한서;방희선
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.17-22
    • /
    • 2016
  • In terms of mechanical and metallurgical characteristics, the effect of tool plunge depths(0.2, 0.5, 0.7, 1.0, 1.5mm) on weldability in dissimilar Al5083-O/DP590 friction spot joint has been clarified. From the results, it is found that the stirred nugget was stably formed at a plunge depth of more than 0.7mm, which is caused by improved stirring action against each other material. With increasing a plunge depth, the thickness of intermetallic compound(IMC) layer in Al5083-O/DP590 joint has a tendency to increase. The tensile shear strength reaches to the maximum failure load of 6.5kN at a plunge depth of 0.7mm due to relatively small decrease in the thickness of Al5083-O sheet and relatively minute thickness of IMC layer, compared with those of other plunge depth conditions.

응력집중의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델 (A Model Estimating the Fatigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress Concentration)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • 제12권3호
    • /
    • pp.90-100
    • /
    • 1994
  • In this study the fatigue crack growth behavior was investigated for the surface cracks in aluminum alloy A5083-O plate and its weldment. Several kinds of specimens were tested at room temperature. The Eccentric specimens(E1.0, E2.5) subjected to combined stresses(tension+bending) were tested and the welded specimens with weld toes(TOE1, TOE2) were tested in order to verify the method to consider the stress concentration such as weld toe. It was ascertained that the surface crack growth property in the weld toe could be predicted by the corrected Pang's equation proposed in this study.

  • PDF

An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

  • Lee, Jin-Sung;You, Won-Hyo;Yoo, Chang-Hyuk;Kim, Kyung-Su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.580-597
    • /
    • 2013
  • Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low ($-100^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083-O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

5083-0 알루미늄合金의 疲勞균열進展 擧動과 균열닫힘에 관한 硏究 (A study of Fatigue Crack Growth Behavior and Crack Closure in 5083-O Aluminum Alloy)

  • 박영조;김정규;김일현
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.208-214
    • /
    • 1986
  • 본 연구에서는 균열 닫힘에 관한 연구의 일환으로 5083-O 알루미늄합금을 사용하고 소규모강복조건하에서 일정진폭하중피로시험을 시행하여 이 재료의 피로균열 진전속도와 균열닫힘에 관하여 검토하였다.

LNG탱크용 알루미늄합금 A5083-O의 관통균열 전파거동 예측 모델 (A Model Estimating the Propagation Behavior of through cracks in Aluminum alloy A5083-O for LNG Tank)

  • 김영식;조상명;김종호
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.50-57
    • /
    • 1998
  • The leak before break(LBB) concept is generalized on the design of LNG tanks, pressure vessels and nuclear reactor in that any leakage of containment, in whatever amount, will not result in catastropic failure. For this purpose it is necessary to determine the surface crack shape, the opening displacement and the risk of catastropic brittle fracture when it becomes a through crack. In this study the crack propagation behavior of surface flaws and the crack opening displacement of through cracks under combined membrane and bending stresses were investigated with fatigue tests and fracture toughness test of aluminium alloy A5083-O. And fracture mechanics analysis of the crack opening displacement of through cracks were made in order to develop a new model expressing the behaviors of COD under combined membrane and bending stresses.

  • PDF

5083-O 알루미늄 합금의 진폭에 따른 캐비테이션 침식 특성 평가 (Evaluation of Cavitation Characteristics of 5083-O Al Alloy with Amplitude)

  • 이승준;김성종
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.205-212
    • /
    • 2012
  • With recent advances in engineering and technology, a damage on industrial machineries performing high-speed and high-power requirements has become a problem. There is an increasing possibility of cavitation damage, especially in pumps, propellers and high-speed vessels in a flowing liquid accordingly. There are several factors affecting cavitation damage on materials, including viscosity, pressure, temperature, amplitude applied. In this study, effects of cavity pressure in seawater on the damage for 5083-O aluminium alloy were evaluated by modulating amplitude. Trend of the damage with respect to time and amplitude was analyzed comparatively, and surface degradation of specimens was investigated by using Scanning Electron Microscope(SEM) and 3D microscope. The result reveals that the amount of the damage increased consistently with the increase in time and amplitude while the plastic deformation zone where no appreciable damage occurred was in less than 30 minutes.

해양환경용 알루미늄 합금 재료의 전기화학적 부식 손상 특성 (Electrochemical Corrosion Damage Characteristics of Aluminum Alloy Materials for Marine Environment)

  • 김성진;황은혜;박일초;김성종
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.421-429
    • /
    • 2018
  • In this study, various electrochemical experiments were carried out to compare the corrosion characteristics of AA5052-O, AA5083-H321 and AA6061-T6 in seawater. The electrochemical impedance and potentiostatic polarization measurements showed that the corrosion resistance is decreased in the order of AA5052-O, AA5083-H321 and AA6061-T6, with AA5052-O being the highest resistant. This is closely associated with the property of passive film formed on three tested Al alloys. Based on the slope of Mott-Schottky plots of an n-type semiconductor, the density of oxygen vacancies in the passive film formed on the alloys was determined. This revealed that the defect density is increased in the order of AA5052-O, AA5083-H321 and AA6061-T6. Considering these facts, it is implied that the addition of Mg, Si, and Cu to the Al alloys can degrade the passivity, which is characterized by a passive film structure containing more defect sites, contributing to the decrease in corrosion resistance in seawater.

Influence of the Welding Speeds and Changing the Tool Pin Profiles on the Friction Stir Welded AA5083-O Joints

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • 제35권3호
    • /
    • pp.44-51
    • /
    • 2017
  • In the present study, AA 5083-O plates are joined by friction stir welding technique. A universal milling machine was used to perform the welding process of the work-pieces which were fixed on the proper position by a vice. The joints were friction stir welded by two tools with different pin profiles; cylindrical threaded pin and tapered smooth one at different rotational speed values; 400 rpm and 630 rpm, and different welding speed values; 100 mm/min and 160 mm/min. During FSW of each joint, the temperature was measured by infra-red thermal image camera. The welded joints were inspected by visually as well as by the macro- and microstructure evolutions. Furthermore, the joints were tested for measuring the hardness and the tensile strength to study the effect of changing the FSW parameters on the mechanical properties. The results show that increasing the rotational speed results in increasing the peak temperature, while increasing the welding speed results in decreasing the peak temperature for the same tool pin profile. Defect free welds were obtained at lower rotational speed by the threaded tool profile. Moreover, the threaded tool pin profile gives superior mechanical properties at lower rotational speed.