Browse > Article
http://dx.doi.org/10.5695/JKISE.2018.51.6.421

Electrochemical Corrosion Damage Characteristics of Aluminum Alloy Materials for Marine Environment  

Kim, Sung Jin (Department of Materials Science and Engineering, Sunchon National University)
Hwang, Eun Hye (Department of Materials Science and Engineering, Sunchon National University)
Park, Il-Cho (Division of Marine Engineering, Mokpo National Maritime University)
Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
Publication Information
Journal of the Korean institute of surface engineering / v.51, no.6, 2018 , pp. 421-429 More about this Journal
Abstract
In this study, various electrochemical experiments were carried out to compare the corrosion characteristics of AA5052-O, AA5083-H321 and AA6061-T6 in seawater. The electrochemical impedance and potentiostatic polarization measurements showed that the corrosion resistance is decreased in the order of AA5052-O, AA5083-H321 and AA6061-T6, with AA5052-O being the highest resistant. This is closely associated with the property of passive film formed on three tested Al alloys. Based on the slope of Mott-Schottky plots of an n-type semiconductor, the density of oxygen vacancies in the passive film formed on the alloys was determined. This revealed that the defect density is increased in the order of AA5052-O, AA5083-H321 and AA6061-T6. Considering these facts, it is implied that the addition of Mg, Si, and Cu to the Al alloys can degrade the passivity, which is characterized by a passive film structure containing more defect sites, contributing to the decrease in corrosion resistance in seawater.
Keywords
Electrochemical experiment; Al alloy; Corrosion; Seawater;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Kaibyshev, F. Musin, D. R. Lesuer, T. G. Nieh, Superplastic behavior of an Al-Mg alloy at elevated temperatures, Mater. Sci. Eng. A 342 (2003) 169-177.   DOI
2 K. A. Yasakau, M. L. Zheludkevich, S. V. Lamaka, M. G. Ferreira, Role of intermetallic phases in localized corrosion of AA5083, Electrochim. Acta 52 (2007) 7651-7659.   DOI
3 A. Aballe, M. Bethencourt, F. J. Botana, M. J. Cano, M. Marcos, Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution, Corros. Sci. 43 (2001) 1657-1674.   DOI
4 U. Donatus, G. E. Thompson, J. A. Omotoyinbo, K. K. Alaneme, S. Aribo, O. G. Agbabiaka, Corrosion pathways in aluminium alloys, Trans. Nonferrous Met. Soc. China 27 (2017) 55-62.   DOI
5 C. Vargel, Corrosion of aluminium, Elsevier (2004) 113-137.
6 J. B. Bessone, D. R. Salinas, C. E. Mayer, M. Ebert, W. J. Lorenz, An EIS study of aluminium barrier-type oxide films formed in different media, Electrochim. Acta 37 (1992) 2283-2290.   DOI
7 A. G. Munoz, J. B. Bessone, Pitting of aluminium in non-aqueous chloride media, Corros. Sci. 41 (1999) 1447-1463.   DOI
8 M. Bethencourt, F. J. Botana, J. J. Calvino, M. Marcos Barcena, J. Perez, M. A. Rodriguez, The influence of the surface distribution of Al6 (MnFe) intermetallic on the electrochemical response of AA5083 aluminium alloy in NaCl solutions, In Materials Science Forum, Trans Tech Publications, 289 (1998) 567-574.
9 B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corros. Sci. 50 (2008) 1841-1847.   DOI
10 P. Arellanes-Lozada, O. Olivares-Xometl, D. Guzman-Lucero, N. V. Likhanova, M. A. Dominguez-Aguilar, I. V. Lijanova, E. Arce-Estrada, The inhibition of aluminum corrosion in sulfuric acid by poly(1-vinyl-3-alkyl-imidazolium hexafluorophosphate), Materials 7 (2014) 5711-5734.   DOI
11 A. Fattah-alhosseini, Passivity of AISI 321 stainless steel in 0.5M $H_2SO_4$ solution studied by Mott-Schottky analysis in conjunction with the point defect model, Arab. J. Chem. 9 (2016) S1342-S1348.   DOI
12 K. D. Ralston, N. Birbilis, C. H. J. Davies, Revealing the relationship between grain size and corrosion rate of metals, Scr. Mater. 63 (2010) 1201-1204.   DOI
13 K. D. Ralston, N. Birbilis, Effect of grain size on corrosion: a review, Corros. 66 (2010) 075005-075005.   DOI
14 M. K. Chung, Y. S. Choi, J. G. Kim, Y. M. Kim, J. C. Lee, Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys, Mater. Sci. Eng. A 366 (2004) 282-291.   DOI
15 S. J. Kim, S. K. Jang, M. S. Han, J. C. Park, J. Y. Jeong, S. O. Chong, Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship, Trans. Nonferrous Met. Soc. China 23 (2013) 636-641.   DOI
16 T. S. Mahmoud, Effect of friction stir processing on electrical conductivity and corrosion resistance of AA6063-T6 Al alloy, Proc. IMechaE. C: J. Mechanical Engineering Science, 222 (2008) 1117-1123.   DOI
17 W. R. Osorio, C. M. Freire, A. Garcia, The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings, Mater. Sci. Eng. A 402 (2005) 22-32.   DOI
18 S. J. Kim, S. J. Lee, J. Y. Jeong, K. H. Kim, Electrochemical characteristics of Al-Mg and Al-Mg-Si alloy in sea water, Trans. Nonferrous Met. Soc. China 22 (2012) s881-s886.   DOI
19 J. D. Kim, S. I. Pyun, Effects of electrolyte composition and applied potential on the repassivation kinetics of pure aluminium, Electrochem. Acta 40 (1995) 1863-1869.   DOI
20 U. Donatus, G. E. Thompson, D. Elabar, T. Hashimoto, S. Morsch, Features in aluminium alloy grains and their effects on anodizing and corrosion, Surf. Coat. Tech. 277 (2015) 91-98.   DOI
21 J. K. Chon, Y. K. Kim, Investigation of the growth kinetics of Al oxide film in sulfuric acid solution, J. Kor, Chem. Soc. 54 (2010) 380-386.   DOI
22 O. I. Sekunowo, S. I. Durowaye, E. C. Anozie, Corrosion propensity of cold deformed 5052 aluminium alloy in seawater, Br. J. Appl. Sci. Tech. 8 (2015) 46-52.   DOI
23 R. Rosliza, Improvement of corrosion resistance of aluminium alloy by natural products, Corrosion Resistance, InTech (2012) 377-396.
24 E. M. Sherif, Corrosion and corrosion inhibition of aluminum in arabian gulf seawater and sodium chloride solutions by 3-Amino-5-Mercapto-1,2,4-triazole, Int. J. Electrochem. Sci. 6 (2011) 1479-1492.
25 B. T. Lu, Y. Zeng, X. Pang, J. L. Luo, Effects of hydrogen and tensile stress on passivity of carbon steel, Corros. Eng. Sci. Techn. 50 (2015) 186-190.   DOI
26 W. L. Xu, T. M. Yue, H. C. Man, Stress corrosion cracking behaviour of excimer laser treated aluminium alloy 6013, Mater. Trans. 49 (2008) 1836-1843.   DOI
27 E. Sikora, D. D. Macdonald, Defining the passive state, Solid State Ion. 94 (1997) 141-150.   DOI
28 A. Afseth, J. H. Nordlien, G. M. Scamans, K. Nisancioglu, Filiform corrosion of binary aluminium model alloys, Corros. Sci. 44 (2002) 2529-2542.   DOI
29 M. J. Carmezim, A. M. Simoes, M. F. Montemor, M. D. C. Belo, Capacitance behavior of passive films on ferritic and austenitic stainless steel, Corros. Sci. 47 (2005) 581-591.   DOI
30 J. R. Davis, Alloying : understanding the basics, second Ed, ASM International, USA (2001) 351-416.