• Title/Summary/Keyword: A356

Search Result 1,978, Processing Time 0.038 seconds

Behavior of Eutectic Si and Mechanical Properties of Sr Modified Al-7Si-0.35Mg alloy with Solid Solution Treatment for Sand Casting (Sr 개량처리된 사형주조 Al-7Si-0.35Mg 합금의 열처리에 따른 공정 Si상 변화거동 및 특성평가)

  • Kim, Myoung-Gyun;Hwang, Seok-Min
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we focused on the correlation between the solidification structure, heat treatment and mechanical properties of the A356 alloy according to the conditions of Sr modification. The microstructural evolution of the eutectic Si and ${\alpha}-Al$ phase in the A356 alloy castings depending on the amount of Sr were investigated during solid solution heat treatment using an optical microscope, a scanning electron microscope and an image analyzer. In addition, tensile tests on the heat treated materials examined the relationship between the microstructure and the fracture surface. The as-cast A356 alloys under 40 ppm Sr showed an undermodified microstructure, but that of the added 60-80 ppm Sr had well modified structure of fine fibrous silicon. After solid solution treatment, the microstructure of the undermodified A356 alloy exhibited a partially spheroidized morphology, but the remainder showed the fragmentation of fibrous shaped silicon. The spheroidization of the eutectic silicon in the modified A356 alloys was completed during heat treatment, which was very effective in increasing the elongation. This is supported by the fracture surface in the tensile test.

Thixo Extrusion and Reheating Characteristics of Semi Solid A356 Alloy (반응고 A356 합금의 재가열 특성 및 반용융 압출)

  • Kim, Dae-Hwan;Jung, Hyun-Ju;Shim, Sung-Yong;Lim, Su-Gun;Lee, Sang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • This work presents the results of a thixo-extrusion process applied to aluminum alloy and and reheating characteristics of semi-solid A356 Alloy using have been discussed. The reheating experiment was performed using an electric resistance furnace and multi-stage heating for uniform reheating. The thixo-extrusion was performed at the optimal reheating conditions of the semi-solid A356 alloy, the the extrusion conditions were an extrusion ratio of 33 and ram speed of 6 mm/sec. The results showed that the thixo-extrusion of semi-solid A356 alloy fabricated by the cooling slope reduced the extrusion pressure by 180% in comparison with hot extrusion, and that a sound extrusion could be obtained in spite of the same extrusion ratio and strain rate.

Effects of Mg Addition on Heat Treatment and Mechanical Properties of A356 Alloy (Mg 첨가에 따른 A356 합금의 열처리 및 기계적 특성 변화)

  • Jo, Jae-Chan;Kim, Kwang-Sam;Im, In-Taek;Kim, Dae-Hwan;Shim, Sung-Yong;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.195-201
    • /
    • 2016
  • The effects of Mg addition on heat treatment and mechanical properties of A356 alloy were investigated. With increased amounts of Mg addition to A356 alloy, the grain size decreased and eutectic Si was refined. And, this process can improve the mechanical properties. Solid solution heat treatment causes the spheroidizing of eutectic Si. In this study, although eutectic Si was refined with Mg addition, solid solution time increased from 2 hours to 6 hours with Mg addition, and aging time also increased, from 4 hours to 8 hours. After heat treatment, Mg2Si remained in a formation of Chinese script. And, Chinese script Mg2Si formed with Mg addition caused a reduction of the elongation of the alloys according to the stress concentration.

Finite Element Analysis Method for Impact Fracture Prediction of A356 Cast Aluminum Alloy (A356 주조 알루미늄 합금의 충격 파괴 예측을 위한 유한요소해석 기법 연구)

  • Jo, Seong-Woo;Park, Jae-Woo;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Generally, metal is the most important material used in many engineering applications. Therefore, it is important to understand and predict the damage of metal as result of the impact. The objective of this research is to evaluate the damage criterion on the impact performance of A356 Al-alloy castings. Both experimental method and computational analysis were used to achieve the research objective. In this paper, we performed impact test according to various impact velocities to the A356 cast aluminium specimen for damage prediction. Impact computational simulation was done by applying properties obtained from the tensile test, and damages was predicted according to the damage criteria based plastic work. The good agreement of the results between the experiment and computer simulation shows that the reliability of the proposed FE simulation method to predict fracture of A356 casting components by impact.

The Effect of Casting Conditions on Shrinkage and Porosity of A356.2 Alloys (A356.2 합금의 수축과 기공에 미치는 주조 조건의 영향)

  • Jeon, Gyu-Tae;Kim, Ki-Young;Kim, Suk-Jun
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.193-198
    • /
    • 2017
  • In this study, volumes of shrinkage and porosity of A356.2 alloys during casting were analyzed as a function of melt temperature, pouring diameter, mold temperature, and Sr content. The temperature of the melt barely affected the shrinkage and porosity formation. The pouring diameter determined the pouring rate, and it was proportional to the shrinkage, yet no relationships with the density of porosity were observed. When the mold was heated at $400^{\circ}C$, shrinkage and porosity in the alloy increased above the one in the mold without heating. However, the mold without heating experienced interior shrinkage and the porosity was mainly distributed near interior shrinkage. The addition of Sr to the melt resulted in more shrinkage and less porosity.

A Comparison of the Grain Size of Semisolid A356 Aluminum Alloy Obtained by EMS Stirring and Grain Refinement (전자 교반과 결정립 미세화에 의한 반용융 A356 재료의 결정립 크기 비교)

  • Yang Z.;Seo P. K.;Ko J. H.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.148-151
    • /
    • 2004
  • Different kinds of feedstock of semisolid a356 aluminum alloy manufactured by EMS stirring only, inoculation of Al-5Ti-B only and combination of inoculation and EMS stirring were investigated. It is found that the grain size of these feedstock are $350{\mu}m$ for EMS casting only, $320{\mu}m$ for inoculation by Al-5Ti-B, and $100{\mu}m$ for the combination of EMS stirring and inoculation of Al-5Ti-B master alloys. The microstructure of the sample obtain by combination of inoculation and EMS system show the best homogeneousness and finest grains.

  • PDF

Microstructure of Semi-solid A356 Alloys made Using Cooling Plate (냉각판을 이용한 반응고 A356합금의 미세조직)

  • 엄정필;김득규;윤병은;임수근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.148-159
    • /
    • 1997
  • In this study, microstructure, size of primary $\alpha$, solid fraction and hardness of A356 Al alloy, were investigated. Semi-solid A356 allos were obtained by semi-solid continuous casting apparatus consists of melting furnace, formation apparatus of granular primary $\alpha$ and continuous casting apparatus. Size of promary $\alpha$ and fraction solid were decreased with decreasing temperature, and with increasing volume of cooling water. At the cooling water temperature of 15$^{\circ}C$ and cooling water volume of 18.2$\ell$/min, the sizes of primary $\alpha$ phases were decreased up to 40${\mu}{\textrm}{m}$, and fraction solid was 0.68.

  • PDF

Assessment of FEMA356 nonlinear static procedure and modal pushover analysis for seismic evaluation of buildings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.243-262
    • /
    • 2012
  • Nonlinear static analysis as an essential part of performance based design is now widely used especially at design offices because of its simplicity and ability to predict seismic demands on inelastic response of buildings. Since the accuracy of nonlinear static procedures (NSP) to predict seismic demands of buildings affects directly on the entire performance based design procedure, therefore lots of research has been performed on the area of evaluation of these procedures. In this paper, one of the popular NSP, FEMA356, is evaluated and compared with modal pushover analysis. The ability of these procedures to simulate seismic demands in a set of reinforced concrete (RC) buildings is explored with two level of base acceleration through a comparison with benchmark results determined from a set of nonlinear time history analyses. According to the results of this study, the modal pushover analysis procedure estimates seismic demands of buildings like inter story drifts and hinges plastic rotations more accurate than FEMA356 procedure.