• Title/Summary/Keyword: A1B Scenario

Search Result 192, Processing Time 0.03 seconds

A Performance Enhancement Scheme for Heterogeneous Network Systems Utilizing Remote Radio Heads (원격송신국을 활용하는 이종 네트워크 시스템의 성능 개선 방안)

  • Yoo, Hyung-Gil;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1B
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, we propose a method to improve cell edge users' performance in HetNet (heterogeneous network) systems by cooperatively transmitting signals using remote radio heads (RRHs) located near coverage boundaries, referred to as edge RRHs. The proposed method locates the edge RRHs in specific locations of the cell boundary and provides an efficient operational strategy by adjusting the duty cycle of the edge RRHs and base stations. The effectiveness of the method is demonstrated by experimental performance based on the system model parameters of the CoMP (coordinated multi-point transmission and reception) scenario, which is discussed in LTE-Advanced (Long Term Evolution - Advanced) standard contributions. When compared with conventional methods, utilization of edge RRHs is especially advantageous for the performance improvement of lower percentile users in terms of average throughput and effectively improves the fairness among users.

Resource Allocation and Power Control for Device-to-Device Communication in LTE-Advanced Based on User Area Information (LTE-Advanced에서 단말간 직접 통신을 위한 영역 정보 기반 자원할당 및 전력 제어 기법)

  • Li, Xiang;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.32-42
    • /
    • 2015
  • In this paper, we considered the scenario that one cellular link and muti-D2D links share the same frequency resource which can improve the spectrum efficiency during uplink communication in LTE (Long Term Evolution)-Advanced network. In order to reduce the interference caused to the D2D users, we set DME (Discovery and Management Entity) which can send the area information to eNB(evolved Node B). We proposed a resource allocation scheme by using these assistant devices to reduce the interference that CUE (Cellular User Equipment) causes to DUE Rx (D2D UE Receiver). Basing on the area information, in order to mitigate the interference among the D2D pairs which share the same frequency resource, a power control scheme has been proposed. The simulation results prove that by using the DMEs, the proposed schemes improve the stability of D2D communication and bring the highest performance of the communication system when comparing to the other different schemes.

Change of Rainfall Characteristics as Climate Change Scenario for Each Province (기후변화 시나리오에 따른 광역지자체별 강우특성 변화)

  • Choi, Yong-Joon;Park, Doo-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.804-804
    • /
    • 2012
  • 기후변화는 범지구적으로 당면한 과제로서 국제적으로도 이에 대한 저감 완화대책 수립 및 시행에 힘쓰고 있다. 이러한 세계적 관심에 따라 최근 우리나라도 국가 물 안보에 대한 보고서 등의 개정에 관심을 기울이고 있는 실정이다. 그러나 이러한 당면한 문제에 대한 계획을 수립하기 위해서는 무엇보다도 직면하고 있는 사실에 대한 이해가 필요하다. 특히 우리나라의 경우에는 비록 국토가 좁은 나라에 속하지만 호우의 계절적 지역적 편차가 큰 편이기 때문에 무엇보다 지역별 변화에 대한 연구가 필요한 실정이다. 지금까지의 수문학 분야의 기후변화에 대한 영향 연구는 대부분 유역을 중심으로 수행되어 왔다. 이는 자연현상을 모의하기 위해서이나 실제적으로 국가예산 계획수립 및 투입은 주로 지자체단위로 이루어지기 때문에 지자체별 영향에 대한 연구도 매우 중요하다. 따라서 본 연구에서의 지역적 범위는 지자체단위로 하였다. 이러한 지역별 분석의 범위는 최소 단위의 의사결정자들을 위한 범주가 되면 이상적이겠지만 실제적으로 이는 여러 가지 이유로 어려운 점이 있기 때문에 본 연구에서는 우리나라의 광역지자체를 공간적 범위로 설정하였다. 또한 기후변화 시나리오는 IPCC(Intergovernmental Panel on Climate Change) 4차 보고서의 탄소배출 시나리오 중 널리 사용되고 있는 3종(A1B, A2, B1) 선정하였으며, GCM은 4종(CNRM: CM3, CSIRO: MK3, CONS: ECHO-G, UKMO: HADCM3)을 적용하였다. 최종적으로 각 광역자 치단체별-시나리오별-GCM 별로 4개의 기간 구간 (2080-2009, 2010-2039, 2040-2069, 2070-2099)으로 나누어 평균 일최대강우량 및 연총강우량의 변화를 분석하였으며, 이러한 분석법은 일본 국토교통성의 경우 이러한 방법에 일최대강우량에 적용하여 미래 기후변화로 인하여 치수안전도 변화 분석에 활용한 바 있다.

  • PDF

Some issues on the downscaling of global climate simulations to regional scales

  • Jang, Suhyung;Hwang, Manha;Hur, Youngteck;Kavvas, M. Levent
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.229-229
    • /
    • 2015
  • Downscaling is a fundamental procedure in the assessment of the future climate change impact at regional and watershed scales. Hence, it is important to investigate the spatial variability of the climate conditions that are constructed by various downscaling methods in order to assess whether each method can model the climate conditions at various spatial scales properly. This study introduces a fundamental research from Jang and Kavvas(2015) that precipitation variability from a popular statistical downscaling method (BCSD) and a dynamical downscaling method (MM5) that is based on the NCAR/NCEP reanalysis data for a historical period and on the CCSM3 GCM A1B emission scenario simulations for a projection period, is investigated by means of some spatial characteristics: a) the normalized standard deviation (NSD), and b) the precipitation change over Northern California region. From the results of this study it is found that the BCSD method has limitations in projecting future precipitation values since the BCSD-projected precipitation, being based on the interpolated change factors from GCM projected precipitation, does not consider the interactions between GCM outputs and local geomorphological characteristics such as orographic effects and land use/cover patterns. As such, it is not clear whether the popular BCSD method is suitable for the assessment of the impact of future climate change at regional, watershed and local scales as the future climate will evolve in time and space as a nonlinear system with land-atmosphere feedbacks. However, it is noted that in this study only the BCSD procedure for the statistical downscaling method has been investigated, and the results by other statistical downscaling methods might be different.

  • PDF

Oversubscription factors for Community Wireless Services using AODV Routing

  • Ajith, P.K.;Yan, Huai-Zhi;Park, Dong-Won
    • The Journal of Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • Community Wireless Networks define the next generation wireless services. Multimedia usages for financial services over community Wireless LAN (WLAN) based mesh networks require link stability. Several new services are being proposed for multimedia over WLANs. Portable Internet Services are implemented by several wireless carriers to proliferate their customer base. However, these services are still expensive and require a central telecom/wireless carrier whose monopoly and preference defines the availability of new services. Our research project identifies the usage of these critical services in public places over the financial services backbone architecture to provide efficient easy-to-use and economical services to their customers and merchants without being dependent on the central wireless carrier. The user connects to the network using his regular WLAN NIC using the Mesh Router/Bridge interconnectivity and obtains the needed multimedia and financial services from the ATM-AP Gateway, In our proposed scenario, the ATN AP-MR use AODV protocol and MR-MC is based on 802.11g/a/b IEEE standard. We use multi path routing protocols for reducing the congestion over a particular route. We demonstrate the results of our simulations and test-bed outcome to evaluate link failure rate and oversubscription factors to eliminate network congestion and non-availability of the critical financial services.

  • PDF

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed (기후변화가 경안천 유역의 수문요소에 미치는 영향 평가)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.33-50
    • /
    • 2009
  • The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

Projection and Analysis of Future Temperature and Precipitation using LARS-WG Downscaling Technique - For 8 Meteorological Stations of South Korea - (LARS-WG 상세화 기법을 적용한 미래 기온 및 강수량 전망 및 분석 - 우리나라 8개 기상관측소를 대상으로 -)

  • Shin, Hyung-Jin;Park, Min-Ji;Joh, Hyung-Kyung;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.83-91
    • /
    • 2010
  • Generally, the GCM (General Circulation Model) data by IPCC climate change scenarios are used for future weather prediction. IPCC GCM models predict well for the continental scale, but is not good for the regional scale. This paper tried to generate future temperature and precipitation of 8 scattered meteorological stations in South Korea by using the MIROC3.2 hires GCM data and applying LARS-WG downscaling method. The MIROC3.2 A1B scenario data were adopted because it has the similar pattern comparing with the observed data (1977-2006) among the scenarios. The results showed that both the future precipitation and temperature increased. The 2080s annual temperature increased $3.8{\sim}5.0^{\circ}C$. Especially the future temperature increased up to $4.5{\sim}7.8^{\circ}C$ in winter period (December-February). The future annual precipitation of 2020s, 2050s, and 2080s increased 17.5 %, 27.5 %, and 39.0 % respectively. From the trend analysis for the future projected results, the above middle region of South Korea showed a statistical significance for winter precipitation and south region for summer rainfall.

Approximation of the Performance Loss of an Adaptive Array due to a Neighboring Interferer (근접한 간섭신호에 의한 어댑티브 어레이의 성능 열화 연구)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.433-439
    • /
    • 2007
  • This paper derives an approximate expression for the output SINR(Signal to Interference plus Noise Ratio) of Applebaum type adaptive array under the scenario of the interferer's proximity to the desired signal. The approximation is made in terms of array geometry, the arrival direction of desired signal and that of an interfering signal. An interferer in the close proximity of target signal is shown to drastically impair the away performance. An approximate expression for interferer arrival direction which results in a predetermined performance loss is also obtained in terms of array configurations. Proposed approximation agrees with the computer calculated performance impairment when the two signals are apart by less than eight degrees. The allowable proximity of the interfering signal increases with the number of array elements.

Evaluation of climate change on the rice productivity in South Korea using crop growth simulation model

  • Lee, Chung-Kuen;Kim, JunHwan;Shon, Jiyoung;Yang, Won-Ha
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.16-18
    • /
    • 2011
  • Evaluation of climate change on the rice productivity was conducted using crop growth simulation model, where Odae, Hwaseong, Ilpum were used as a representative cultivar of early, medium, and medium-late rice maturity type, respectively, and climate change scenario 'A1B' was applied to weather data for future climate change at 57sites. When cropping season was fixed, rice yield decreased by 4~35% as climate change which was caused by poor filled grain ratio with high temperature and low irradiation during grain-filling. When cropping season was changed, rice yield decreased by only 0~5% as climate change which was caused poor filled grain ratio with low irradiation during grain-filling period. However, this irradiation decline was less than when cropping season was fixed. Therefore, we need to develop rice cultivars resistant to low irradiation which can maintain high filled grain ratio under poor irradiation condition, and late maturity rice cultivars whose growing period is longer than the present medium-late maturity type.

  • PDF

Coupled Hydro-Mechanical Modelling of Fault Reactivation Induced by Water Injection: DECOVALEX-2019 TASK B (Benchmark Model Test) (유체 주입에 의한 단층 재활성 해석기법 개발: 국제공동연구 DECOVALEX-2019 Task B(Benchmark Model Test))

  • Park, Jung-Wook;Kim, Taehyun;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.670-691
    • /
    • 2018
  • This study presents the research results of the BMT(Benchmark Model Test) simulations of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to predict fault reactivation and the coupled hydro-mechanical behavior of fault. BMT scenario simulations of Task B were conducted to improve each numerical model of participating group by demonstrating the feasibility of reproducing the fault behavior induced by water injection. The BMT simulations consist of seven different conditions depending on injection pressure, fault properties and the hydro-mechanical coupling relations. TOUGH-FLAC simulator was used to reproduce the coupled hydro-mechanical process of fault slip. A coupling module to update the changes in hydrological properties and geometric features of the numerical mesh in the present study. We made modifications to the numerical model developed in Task B Step 1 to consider the changes in compressibility, Permeability and geometric features with hydraulic aperture of fault due to mechanical deformation. The effects of the storativity and transmissivity of the fault on the hydro-mechanical behavior such as the pressure distribution, injection rate, displacement and stress of the fault were examined, and the results of the previous step 1 simulation were updated using the modified numerical model. The simulation results indicate that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing interaction and collaboration with other research teams of DECOVALEX-2019 Task B and validated using the field experiment data in a further study.