• 제목/요약/키워드: A. Carbon/carbon composites

검색결과 1,591건 처리시간 0.024초

Properties of Silicon Carbide-Carbon Fiber Composites Prepared by Infiltrating Porous Carbon Fiber Composites with Liquid Silicon

  • Lee, Jae-Chun;Park, Min-Jin;Shin, Kyung-Sook;Lee, Jun-Seok;Kim, Byung-Gyun
    • The Korean Journal of Ceramics
    • /
    • 제3권4호
    • /
    • pp.229-234
    • /
    • 1997
  • Silicon carbide-carbon fiber composites have been prepared by partially Infiltrating porous carbon fiber composites with liquid silicon at a reaction temperature of $1670^{\circ}C$. Reaction between molten silicon and the fiber preform yielded silicon carbide-carbon fiber composites composed of aggregates of loosely bonded SiC crystallites of about 10$\mu\textrm{m}$ in size and preserved the appearance of a fiber. In addition, the SiC/C fiber composites had carbon fibers coated with a dense layer consisted of SiC particles of sizes smaller than 1$\mu\textrm{m}$. The physical and mechanical properties of SiC/C fiber composites were discussed in terms of infiltrated pore volume fraction of carbon preform occupied by liquid silicon at the beginning of reaction. Lower bending strength of the SiC/C fiber composites which had a heterogeneous structure in nature, was attributed to the disruption of geometric configuration of the original carbon fiber preform and the formation of the fibrous aggregates of the loosely bonded coarse SiC particles produced by solution-precipitation mechanism.

  • PDF

Properties of Carbon Black/SBR Rubber Composites Filled by Surface Modified Carbon Blacks

  • Dai, Shuang-Ye;Ao, Ge-You;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.115-119
    • /
    • 2007
  • Properties of carbon blacks and carbon black/SBR rubber composites filled by surface modified carbon blacks were examined. Although the specific surface area of carbon blacks increased after the surface modifications with heat, acid, and base, there were no obvious changes in resistivity. The composites filled by heat treated carbon blacks showed a higher tensile strength and elongation than those filled by raw blacks. The acid and base treated carbon blacks filled composites also showed higher tensile strength but similar elongation values with those filled by raw blacks. With increasing loading ratio, both tensile strength and elongation increased, and appeared a maximum value at 30-40 phr. Modulus at 300% strain remained increasing with further loading of carbon blacks. At the same loading, the heat treated black filled composites showed similar modulus values with composites filled by raw blacks but for base and acid treated black filled composites much higher values were obtained. After the surface modification, the functional groups which played an important role in reinforcement action were changed.

Effect of Compositional Parameters on the Characteristics of C-SiC-$B_4C$ Composites

  • Aggarwal, R.K.;Bhatia, G.B.;Saha, M.;Mishra, A.
    • Carbon letters
    • /
    • 제5권4호
    • /
    • pp.164-169
    • /
    • 2004
  • Carbon-ceramic composites refer to a special class of carbon based materials which cover the main drawbacks of carbon, particularly its proneness to air oxidation, while essentially retaining its outstanding properties. In the present paper, the authors report the results of a systematic study made towards the development of C-SiC-$B_4C$ composites, which involves the effects of compositional parameters, namely, carbon-to-ceramic and ceramic-to-ceramic ratios, on the oxidation behaviour as well as other characteristics of these composites. The C-SiC-$B_4C$ composites, heat-treated to $1400^{\circ}C$, have shown that their oxidation behaviour at temperatures of 800~$1200^{\circ}C$ depends jointly on the total ceramic content and the SiC : $B_4C$ ratio. Good compositions of C-SiC-$B_4C$ composites exhibiting zero weight loss in air at temperatures of 800~$1200^{\circ}C$ for periods of 4~9 h, have been identified. Composites with these compositions undergo a weight gain or a maximum weight loss of less than 3% during the establishment of a protective layer at the surface of carbon in a period of 1~6 h. Significant improvement in the strength of C-SiC-$B_4C$ composites has been observed which increases with an increase in the total ceramic content and also with an increase in the SiC : $B_4C$ ratio.

  • PDF

Flexural Behaviors of 4D Carbon/carbon Composites with the Preform Architectures

  • Lee, Ki-Woong;Park, Jong-Min;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제9권1호
    • /
    • pp.28-34
    • /
    • 2008
  • Multidirectional reinforcement is aimed primarily at overcoming interlaminar weakness, hence a major interest lies in the mechanical properties of multidirectional carbon/carbon composites. Mechanical properties depend on the type of carbon fiber, the size of the fiber bundle, the spacing of the bundles, the angles of the bundles relative to the axes of the block, and matrix formation. In the present studies, PAN based carbon fiber preforms manufactured different size of unit cell have been prepared. Densification of these used high pressure infiltration and carbonization technique with coal tar pitch as matrix precursor was carried out. Scanning electron microscopy has been used to study the fracture behavior of composites. The size of unit cell of the preforms has considerably affected on the flexural properties as well as microstructure of the carbon/carbon composites.

Challenges in Carbon/Carbon Composites Technologies

  • Dhami, T.L.;Bahl, O.P.
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.148-157
    • /
    • 2005
  • Carbon/Carbon Composites due to their far superior thermo-mechanical properties are used in a number of demanding applications. However, the material still is used only in specific high tech applications with few exceptions in general industrial applications. The material is extremely expensive and the major challenge is to reduce its cost. Various innovative processing routes are outlined to reduce the cost of processing.

  • PDF

평직 탄소섬유의 플라즈마 처리 및 이에 따른 탄소섬유/에폭시 복합재의 마모 특성 (Effect of Plasma Modification of Woven type Carbon Fibers on the Wear Behavior of Carbon Fiber/Epoxy Composites)

  • 이재석;이경엽
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.113-118
    • /
    • 2010
  • For a present study, woven type carbon fibers were surface-modified by oxygen plasma to improve adhesive strength between carbon fibers and epoxy. The change of hydrophilic properties by the plasma modification was investigated through the contact angle measurement and the calculation of surface energy of carbon fiber due to the oxygen plasma modification. FESEM and XPS analyses were performed to study the chemical and physical changes on the surface of carbon fibers due to the oxygen plasma modification. Pin-on-disk wear tests were conducted under dry condition using unmodified and plasma-modified carbon/epoxy composites to investigate the effect of plasma modification on the wear behavior of woven type carbon/epoxy composites. The results showed that the friction coefficient and the wear rate of plasma-modified carbon/epoxy composites were lower than those of unmodified carbon/epoxy composites, respectively. XPS analysis showed that new functional group of a carbonyl type was created on the carbon fibers by the $O_2$ plasma treatment, which enhanced adhesive strength between carbon fibers and epoxy, leading to improve wear properties

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

어선 선체의 탄소섬유복합재 적용을 위한 구조 강도 특성 연구 (A Study of Structural Strength Characteristics for Application of Carbon Composites in Fishing Vessel Hull)

  • 이해수;이형원;최승준;오명준
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.69-77
    • /
    • 2023
  • Recently, carbon composites have been applied to various fields. However, carbon composites have not been applied to the fishing vessel field due to its structure standards centered on glass composites. In this study, a structural strength evaluation study was conducted for the application of carbon composites in the fishing vessel field. Hull minimum thickness verification test and hull joint verification test were conducted. Compared to glass composites, the verification was based on equivalent or better performance. The results show that carbon composites can reduce the weight by 20% compared to glass composites. For hull joints, it was necessary to increase the thickness of the joint seam by the thickness of the hull to apply carbon composite. Through this study, a standard for the application of carbon composites to fishing vessel can be established.

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF

Photonic Aspects of MB Degradation on Fe-carbon/TiO2 Composites under UV Light Irradiation

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.433-438
    • /
    • 2010
  • Fe-carbon/$TiO_2$ composites were prepared by a sol-gel method using AC, ACF, CNT and $C_{60}$ as carbon precursors and were characterized by means of BET surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The activity of the prepared photocatalysts was investigated by degradation reaction of methylene blue (MB) irradiated with UV lamp. Effects of different carbon sources and irradiation time on photocatalytic activity were also investigated. The results showed that the photocatalytic activity of the Fe-carbon/$TiO_2$ composites was much higher than that of pristine $TiO_2$ and Fe/$TiO_2$ composites. The prominent photocatalytic activity of Fecarbon/$TiO_2$ composites could be attributed to both the effects of photo-adsorption and electron transfer by carbon substrate. In addition, the higher photocatalytic activity of Fe-carbon/$TiO_2$ composites can be compared with that of carbon/$TiO_2$ and Fe /$TiO_2$ composites due to cooperative effects between Fe and carbon.