• Title/Summary/Keyword: A-star algorithm

Search Result 151, Processing Time 0.027 seconds

Improving CMD Areal Density Analysis: Algorithms and Strategies

  • Wilson, R.E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMD's) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMD-generation program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities ($\mathcal{A}$), and large variation in $\mathcal{A}$ are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.

Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain (무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획)

  • Yun, SeungJae;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.

Elderly Assistance System Development based on Real-time Embedded Linux (실시간 임베디드 리눅스 기반 노약자 지원 로봇 개발)

  • Koh, Jae-Hwan;Yang, Gil-Jin;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1036-1042
    • /
    • 2013
  • In this paper, an elderly assistance system is developed based on Xenomai, a real-time development framework cooperating with the Linux kernel. A Kinect sensor is used to recognize the behavior of the elderly and A-star search algorithm is implemented to find the shortest path to the person. The mobile robot also generates a trajectory using a digital convolution operator which is based on a Bezier curve for smooth driving. In order to follow the generated trajectory within the control period, we developed real-time tasks and compared the performance of the tracking trajectory with that of non real-time tasks. The real-time task has a better result on following the trajectory within the physical constraints which means that it is more appropriate to apply to an elderly assistant system.

Symmetry and Embedding Algorithm of Interconnection Networks Folded Hyper-Star FHS(2n,n) (상호연결망 폴디드 하이퍼-스타 FHS(2n,n)의 대칭성과 임베딩 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok;Kim, Sung-Won
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.501-508
    • /
    • 2009
  • In this paper, we prove that folded hyper-star network FHS(2n,n) is node-symmetric and a bipartite network. We show that FHS(2n,n) can be embedded into odd network On+1 with dilation 2, congestion 1 and Od can be embedded into FHS(2n,n) with dilation 2 and congestion 1. Also, we show that $2n{\time}n$ torus can be embedded into FHS(2n,n) with dilation 2 and congestion 2.

Performance Evaluation of the Field-Oriented Control of Star-Connected 3-Phase Induction Motor Drives under Stator Winding Open-Circuit Faults

  • Jannati, Mohammad;Idris, Nik Rumzi Nik;Aziz, Mohd Junaidi Abdul
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.982-993
    • /
    • 2016
  • A method for the fault-tolerant vector control of star-connected 3-phase Induction Motor (IM) drive systems based on Field-Oriented Control (FOC) is proposed in this paper. This method enables the control of a 3-phase IM in the presence of an open-phase failure in one of its phases without the need for control structure changes to the conventional FOC algorithm. The proposed drive system significantly reduces the speed and torque pulsations caused by an open-phase fault in the stator windings. The performance of the proposed method was verified using MATLAB (M-File) simulation as well experimental tests on a 1.5kW 3-phase IM drive system. This paper experimentally compares the operation of the proposed fault-tolerant vector controller and a conventional vector controller during open-phase fault.

Input Pattern Vector Extraction and Pattern Recognition of Taste using fMRI (fMRI를 이용한 맛의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Sun-Yeob;Lee, Yong-Gu;Kim, Dong-Ki
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.419-426
    • /
    • 2007
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize taste(bitter, sweet, sour and salty) pattern vectors. The signal intensity of taste are used to compose the input pattern vectors. The SOM(Self Organizing Maps) algorithm for taste pattern recognition is used to learn initial reference vectors and the ot-star learning algorithm is used to determine the class of the output neurons of the sunclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ(Learning Vector Quantization) algorithm. The pattern vectors are classified into subclasses by neurons in the subclass layer, and the weights between subclass layer and output layer are learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors, the proposed algorithm is simulated with ones of the conventional LVQ, and it is confirmed that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization

  • Thi-Hau Nguyen;Ha-Nam Nguyen;Dang-Nhac Lu;Duc-Nhan Nguyen
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.85-90
    • /
    • 2023
  • The Ant Colony System (ACS) is a variant of Ant colony optimization algorithm which is well-known in Traveling Salesman Problem. This paper proposed a hybrid method based on genetic algorithm (GA) and ant colony system (ACS), called GACS, to solve traffic routing problem. In the GACS, we use genetic algorithm to optimize the ACS parameters that aims to attain the shortest trips and time through new functions to help the ants to update global and local pheromones. Our experiments are performed by the GACS framework which is developed from VANETsim with the ability of real map loading from open street map project, and updating traffic light in real-time. The obtained results show that our framework acquired higher performance than A-Star and classical ACS algorithms in terms of length of the best global tour and the time for trip.

3 Steps LVQ Learning Algorithm using Forward C.P. Net. (Forward C-P. Net.을 이용한 3단 LVQ 학습알고리즘)

  • Lee Yong-gu;Choi Woo-seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.33-39
    • /
    • 2004
  • In this paper. we design the learning algorithm of LVQ which is used Forward Counter Propagation Networks to improve classification performance of LVQ networks. The weights of Forward Counter Propagation Networks which is between input layer and cluster layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ algorithm. Finally. pattern vectors is classified into subclasses by neurons which is being in the cluster layer, and the weights of Forward Counter Propagation Networks which is between cluster layer and output layer is learned to classify the classified subclass, which is enclosed a class. Also. kr the number of classes is determined, the number of neurons which is being in the input layer, cluster layer and output layer can be determined. To prove the performance of the proposed learning algorithm. the simulation is performed by using training vectors and test vectors that ate Fisher's Iris data, and classification performance of the proposed learning method is compared with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional classification.

  • PDF

Gas dynamics and star formation in dwarf galaxies: the case of DDO 210

  • Oh, Se-Heon;Zheng, Yun;Wang, Jing
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.75.4-75.4
    • /
    • 2019
  • We present a quantitative analysis of the relationship between the gas dynamics and star formation history of DDO 210 which is an irregular dwarf galaxy in the local Universe. We perform profile analysis of an high-resolution neutral hydrogen (HI) data cube of the galaxy taken with the large Very Large Array (VLA) survey, LITTLE THINGS using newly developed algorithm based on a Bayesian Markov Chain Monte Carlo (MCMC) technique. The complex HI structure and kinematics of the galaxy are decomposed into multiple kinematic components in a quantitative way like 1) bulk motions which are most likely to follow the underlying circular rotation of the disk, 2) non-circular motions deviating from the bulk motions, and 3) kinematically cold and warm components with narrower and wider velocity dispersion. The decomposed kinematic components are then spatially correlated with the distribution of stellar populations obtained from the color-magnitude diagram (CMD) fitting method. The cold and warm gas components show negative and positive correlations between their velocity dispersions and the surface star formation rates of the populations with ages of < 40 Myr and 100~400 Myr, respectively. The cold gas is most likely to be associated with the young stellar populations. Then the stellar feedback of the young populations could influence the warm gas. The age difference between the populations which show the correlations indicates the time delay of the stellar feedback.

  • PDF

A Navigation System for a Patrol Robot in Indoor Environments (실내 환경에서의 경비로봇용 주행시스템)

  • Choi, Byoung-Wook;Lee, Young-Min;Park, Jeong-Ho;Shin, Dong-Kwan
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.117-124
    • /
    • 2006
  • In this paper, we develope the navigation system for patrol robots in indoor environment. The proposed system consists of PDA map modelling, a localization algorithm based on a global position sensor and an automatic charging station. For the practical use in security system, the PDA is used to build object map on the given indoor map. And the builded map is downloaded to the mobile robot and used in path planning. The global path planning is performed with a localization sensor and the downloaded map. As a main controller, we use PXA270 based hardware platform in which embedded linux 2.6 is developed. Data handling for various sensors and the localization algorithm are performed in the linux platform. Also, we implemented a local path planning algorithm for object avoidance with ultra sonar sensors. Finally, for the automatic charging, we use an infrared ray system and develop a docking algorithm. The navigation system is experimented with the two-wheeled mobile robot using North-Star localization system.

  • PDF