• Title/Summary/Keyword: A-harmonic equation

Search Result 224, Processing Time 0.024 seconds

SH Wave Scattering from Cracks: Comparisons of Approximate and Exact Solutions (SH파의 균열 산란장 해석: 근사해와 엄밀해의 비교)

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Song, Sung-Jin;Schmerr, L.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.354-361
    • /
    • 2004
  • This Paper describes a crack scattering model for SH wave based on the boundary integral equation(BIE) method, where the fundamental unknown is crack opening displacement(COD). When a time harmonic plane wave was incident on a 2-D isolated crack (slit) of width 2a, the COD distributions were numerically calculated as a function of ka. The calculated COD agreed well with results obtained with other methods. The far-field scattering amplitude, which completely characterizes the flaw response, was calculated in two ways. The Kirchhoff approximation and the BIE-COD exact formulation were compared in terms of incidence angle and frequency ka in a pulse-echo mode. Maximum response was obtained for both methods at the specular reflection direction. Away from the specular direction, the Kirchhoff approximation becomes less accurate. The time domain crack response was also calculated using a band-limited spectrum of center frequency 10 MHz. At oblique incidence to the crack both methods show the existence of an antisymmetric flash points occurring from the crack edge. The Kirchhoff approximation provides an exact time interval between flash points, although it unrealistically gives the same amplitude.

Model Simulation of a HF Chemical Laser and Numerical Analyses of It's Behaviors (HF 화학 레이저에 대한 Model Simulation과 그 작동 특성의 수치분석)

  • Yang Mee Kim;Ung Kim;Ung-In Cho
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.168-176
    • /
    • 1989
  • Theoretical analysis of HF chemical laser models are performed through chemical reaction kinetics, gain process and stimulated emission process. A chemical laser of F+$H_2$ nonchain reaction is investigated through V-R transitions of excited HF for vibrational levels up to v = 3 and rate equations including nonchain pumping and deactivation. On this analysis, harmonic and anharmonic vibrational levels are considered separately and the results of the corresponding power calculations are showed very small difference between the two. Output powers are calculated with variation of temperature and initial concentrations of $H_2$. A HF chemical laser of $H_2$+$F_2$ chain reaction is also simulated with a premixed initial condition. Results of present model calculations are satisfactory through comparison with detailed calculations reported by others.

  • PDF

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

Realization of a New PWM Inverter Using Walsh Series (왈쉬 급수를 이용한 새로운 PWM 인버터의 구현)

  • Joe, Jun-Ik;Chon, Byoung-Sil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.124-129
    • /
    • 1990
  • This paper describes a new method to eliminate some selected harmonics (5,7,11) in PWM waveforms using Walsh and related orthogonal functions. Previous analyses of PWM waveforms are based on the nonlinear equations requiring iterative solution methods which are not practical in real-time systems. In addition, synthesis of low harmonics waveform at high power system is not easy to implement with power electronic hardware. The goal of this paper is to achieve the harmonics elimination in a PWM waveform by replacing the nonlinear equations in Fourier analysis with linear algebraic equations resulting from the use of orthogonal Walsh equation. This paper also describes how to synthesize low ordered harmonic waveforms with practical power electronic hardware. Walsh and Radmacher functions are easily manipulated by Harmuth's array generator, and those algorithms are accurate, computationally efficient and faster than algorithm based on Fourier analysis. In addition, this method is simulated to synthesize periodic PWM waveforms. From the experi-mental results, it is shown that single-phase PWM waveform are identified with the proposed method. And these methods are also extended to three-phase PWM waveforms in this paper.

  • PDF

A Study on the hydrological generation of streamflow - A study on the Range determination of reservoir - (하천유량의 수문학적 모의기술에 관한 연구(I) - 저수지의 Range 결정에 관한 연구)

  • Choe, Han-Gyu;Choe, Yeong-Park;Kim, Chi-Hong
    • Water for future
    • /
    • v.15 no.2
    • /
    • pp.33-39
    • /
    • 1982
  • For the determination of a reservoir capacity Rippl's mass-curve method has long been used with the past river flow data assuming the same flow records will be repeated in the future. In this study the synthetic generation methods of thomas-Fiering type and harmonic analysis were used to synthetically generate 50 years of monthly river inflows to three single-purpose reservoris(Chuncheon, Chungpyong, Hwacheon) and three multi-purpose reservoirs(Soyany, Andon, Daichung). The generated sequences of monthly flows were analyzed based on the range concept, and hence the so-determined ranges for single-prupose and multi-purpose rewervoirs were correlated with the number of monthly flow subseries, resulting an empirical equation of the Feller's type. (1) Single-purpose reservoir $$R_n=2.8357 I\sqrt{n}$$ (2) Multi-purpose reservoir $$R_n=2.5145 I\sqrt{n}$$ where, $R_n$:Range(㎥/S-M) n:periodic(12 months, ……120 months) I:Input mean(㎥/S-M) In Korea, the monthly inflow data generation will be fit to the Thomas-Fiering type, and this paper shows that the periodic range is easily calculated without the Rippl's mass-curve method as shown above formula.

  • PDF

Validation of Rotor Aeroacoustic Noise in Hovering and Low Speed Descent Flight (정지 및 저속 하강 비행하는 헬리콥터 로터의 소음 해석 및 검증)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.516-525
    • /
    • 2015
  • In this paper, the acoustic pressure of a helicopter rotor in hovering and low speed descent flight is predicted and compared with experimental data. Ffowcs Williams-Hawkings equation is used to predict the acoustic pressure. Two different wind tunnel test data are used to validate the predicted results. Boeing 360 model rotor test results are used for the low-frequency noise in hover, and HART II test results are employed for the mid-frequency noise, especially BVI noise, in low speed descent flight. A simple free-wake model as well as the state-of-the-art CFD/CSD coupling method are adopted to perform the analysis. Numerical results show good agreement against the measured data for both low-frequency and mid-frequency harmonic noise signal. The noise carpet results predicted using the FFT(Fast Fourier Transform) shows also reasonable correlation with the measured data.

Natural Frequency of 2-Dimensional Cylinders in Heaving; Frequency-Domain Analysis (상하동요하는 2차원 주상체의 고유진동수; 주파수 영역 해석)

  • Song, Je-Ha;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • Following the previous works on the natural frequency of heaving circular cylinder, i.e. Lee and Lee (2013) and Kim and Lee (2013), an investigation of the same spirit on the 2-dimensional cylinder of Lewis form has been conducted. As before, the natural frequency is defined as that corresponding to the local maximum of the MCFR (Modulus of Complex Frequency Response), which is given by the equation of motion in the frequency domain analysis. Hydrodynamic coefficients were found by using the Ursell-Tasai method, and numerical results for them were obtained up to much higher frequencies than before, for which the method was known as numerically unstable in the past. For a wide range of H, the beam-draft ratio, and ${\sigma}$, the sectional area coefficient, including their practical ranges for a ship, results for the natural frequency were computed and presented in this work. Two approximate values for the natural frequency, one proposed by Lee (2008) and another one by the damped harmonic oscillator, were also compared with the current results, and for most cases it was observed that the current result is between the two values. Our numerical results showed that the values of the local maximum of MCFR as well as the natural frequencye increase as ${\sigma}$ increases while H decreases. At present, extension of the present finding to the 3-dimensional ship via the approximate theory like the strip method looks promising.

Finite Element Dynamic Analysis of a Vertical Pile by Wave and Tidal Current (파도와 조류에 의한 수직 파일의 유한요소 동적거동 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.183-192
    • /
    • 2004
  • New dynamic analysis procedures lot the vertically drilled sea water pile are suggested and demonstrated by the typical design Problem. Pile structure submerged in the sea water as well as forces by the ocean waves and tidal currents are modeled and formulated by finite element method. To obtain wave forces for the finite element equation, Airy's wave theory is tested and selected among others. Lateral lifting forces induced by the vortex shedding of current flow is simply based on the harmonic function with the Strouhal frequency and lifting coefficient. Natural frequencies and frequency responses for the pile are calculated by NASTRAN using the results of the formulation. Dynamic displacement and stress results obtained by these procedures are shown to be applicable to predict the dynamic behaviors of the ocean pile by the wave and lifting forces as a preliminary design analysis.

One Dimensional Heat Flow Equation Incorporated with the Vertical Water Flow in Paddy Soils I. An Analytical Solution and It's Application to Tow Different Paddy Soils with Different Percolation Rates (답토양(沓土壤)에 있어서 물 이동(移動)이 복합(複合)된 일차원(一次元) 열이동방정식(熱移動方程式)에 관(關)하여 I. 분석해(分析解)와 투수속도(透水速度)가 다른 두 답토양(沓土壤)에 대(對)한 적용(適用))

  • Jung, Yeong-Sang;Kim, Lee-Yul;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.179-184
    • /
    • 1982
  • To describe a mathematical heat transfer model in saturated paddy soils, an analytical solution of the heat flow equation incorporated with the heat transfer by mass flow of water was obtained under the assumptions: 1) the diurnal (or annual) changes in temperature at a depth follow harmonic curves, 2) the temperature at the infinite depth be constant and 3) the temperatures of soil and water at the one depth be identical. The calculation of thermal diffusivities of the soil is possible with the known values of the physical parameters of each component in the soil matrix (heat capacity, density and porosity), percolation rate and the minimum and maximum temperatures at two different depths. The calculated thermal diffusivities using the solution were $9.5cm^2/hr$ for the loam soil with the percolation rate of 0.88cm/day and $13.9cm^2/hr$ for the sandy loam soil with the percolation rate of 2.64 cm/day.

  • PDF

A Study on Improving the Capacity of Absorbing Boundary Using Dashpot (점성감쇠기를 이용하는 흡수경계의 성능 향상에 관한 연구)

  • Kim, Hee-Seok;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.629-640
    • /
    • 2007
  • In this paper an analytical study is carried out to improve the capacity of absorbing boundary using dashpot, one of the most widely used absorbing boundaries in FEM. Using 2-D harmonic plane wave equation, absorbing boundary condition is modified to maximize its capacity according to the incident angle. Validity of the absorbing boundary conditions which is modified is investigated by adopting the solution of Miller and Pursey. The Miller and Pursey's problem is then numerically simulated using the finite element method. The absorption ratios are calculated by comparing the displacements at the absorbing boundary to those at the free field without the absorbing boundary. The numerical study is carried out through comparison of displacement at the interior region and the boundary of the numerical model.