• Title/Summary/Keyword: A-frame method

Search Result 4,046, Processing Time 0.031 seconds

Collapse resistance of steel frames in two-side-column-removal scenario: Analytical method and design approach

  • Zhang, JingZhou;Yam, Michael C.H.;Soltanieh, Ghazaleh;Feng, Ran
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.485-496
    • /
    • 2021
  • So far analytical methods on collapse assessment of three-dimensional (3-D) steel frames have mainly focused on a single-column-removal scenario. However, the collapse of the Federal Building in the US due to car bomb explosion indicated that the loss of multiple columns may occur in the real structures, wherein the structures are more vulnerable to collapse. Meanwhile, the General Services Administration (GSA) in the US suggested that the removal of side columns of the structure has a great possibility to cause collapse. Therefore, this paper analytically deals with the robustness of 3-D steel frames in a two-side-column-removal (TSCR) scenario. Analytical method is first proposed to determine the collapse resistance of the frame during this column-removal procedure. The reliability of the analytical method is verified by the finite element results. Moreover, a design-based methodology is proposed to quickly assess the robustness of the frame due to a TSCR scenario. It is found the analytical method can reasonably predict the resistance-displacement relationship of the frame in the TSCR scenario, with an error generally less than 10%. The parametric numerical analyses suggest that the slab thickness mainly affects the plastic bearing capacity of the frame. The rebar diameter mainly affects the capacity of the frame at large displacement. However, the steel beam section height affects both the plastic and ultimate bearing capacity of the frame. A case study on a six-storey steel frame shows that the design-based methodology provides a conservative prediction on the robustness of the frame.

A study on the Structural Analysis and Loading Test of Bogie Frame (대차틀의 구조해석 및 하중시험에 관한 연구)

  • Kim Won-kyung;Yoon Sung-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.566-572
    • /
    • 2005
  • This paper describes the results of structural analysis and loading test of a bogie frame. The purpose of the analysis and test is to evaluate the safety and functionality of the bogie frame under maximum load. The bogie system consist of the bogie frame, suspensions, wheel-sets, a brake system and a transmission system. Of these components, the bogie frame is the major components subjected to the vehicle and passenger loads. The evaluation method used the JIS E 4207 specifications throughout the FEM analysis and static load test. The test results have shown the bogie frame to be safe and stable under design load conditions.

A Basic Research for Connection Type of Green Frame (Green Frame 접합방식 기초연구)

  • Kim, Keun-Ho;Joo, Jin-Kyu;Lim, Chae-yeon;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.171-172
    • /
    • 2011
  • Green column and green beam, key structural members of green frame, have the characteristics of post-lintel structure, thanks to the steel frame in the connection, enabling prompt and precise installation. The connection of green frame can be divided into 4 types, depending on its shape, and each type is associated with different characteristics and construction methods. Notably, as the connection between green columns have differing types and sequences of work, subject to the connection method in use, a connection method optimized for relevant site conditions need to be selected. Therefore, this study analyzed pros and cons of 4 different types of green frame connection methods. The results set forth herein will provide basic data for subsequent studies to comparatively analyze the performance and constructibility of different green frame connection methods.

  • PDF

A Method for Generating Inbetween Frames in Sign Language Animation (수화 애니메이션을 위한 중간 프레임 생성 방법)

  • O, Jeong-Geun;Kim, Sang-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1317-1329
    • /
    • 2000
  • The advanced techniques for video processing and computer graphics enables a sign language education system to appear. the system is capable of showing a sign language motion for an arbitrary sentence using the captured video clips of sign language words. In this paper, a method is suggested which generates the frames between the last frame of a word and the first frame of its following word in order to animate hand motion. In our method, we find hand locations and angles which are required for in between frame generation, capture and store the hand images at those locations and angles. The inbetween frames generation is simply a task of finding a sequence of hand angles and locations. Our method is computationally simple and requires a relatively small amount of disk space. However, our experiments show that inbetween frames for the presentation at about 15fps (frame per second) are achieved so tat the smooth animation of hand motion is possible. Our method improves on previous works in which computation cost is relativey high or unnecessary images are generated.

  • PDF

Structural Cost Optimization for Building Frame System Using High-Strength Steel Members (고강도 강재를 사용한 건물골조방식 구조물의 구조비용 최적화)

  • Choi Sang-Hyun;Kwon Bong-Keun;Kim Sang-Bum;Seo Ji-Hyun;Kwon Yun-Han;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.541-548
    • /
    • 2006
  • This study presents a structural cost optimization method for building frame system using high-strength steel members. In, this optimization method, the material cost of steel member is involved in objective function to find the optimal cost of building frame systems. Genetic Algorithm is adopted to optimizer to find structural cost optimization. The proposed adapted to structural design of 3.5 stories example buildings with buildings frame systems. As a result, The proposed optimization method can be effectively adapted to cost optimization of building frame systems using high-strength steel members.

  • PDF

Reliability Analysis of Frame Strctures (뼈대구조의 신뢰성 해석)

  • 이정재;고재군;김한중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.116-127
    • /
    • 1994
  • A reliability analysis model for the frame structure which grafts the discretized ideal plastic method to the stochastic finite element method is introduced. The proposed method simmulates realistically the sequencial occurrence of plastic hinges and yields the probability of failure directly from the geometrical and material properties of a frame structure. The presented method can also take into account the uncertainties inherent in loads and resisten- ces through the stochastic finite element technique. The analysis results are compared with those of the Monte Carlo Simmulation, the Bound Theory, and the fs-unzipping method, and show good agreement.

  • PDF

Minimum cost design of RCMRFs based on consistent approximation method

  • Habibi, Alireza;Shahryari, Mobin;Rostami, Hasan
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, a procedure for automated optimized design of reinforced concrete frames has been presented. The procedure consists of formulation and solution of the design problem in the form of an optimization problem. The minimization of total cost of R/C frame has been taken as the objective of optimization problem. In this research, consistent approximation method is applied to explicitly formulate constraints and objective function in terms of the design variables. In the presented method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the Sequential Quadratic Programming (SQP) method. The proposed method is demonstrated through a four-story frame and an eight-story frame, and the optimum results are compared with those in the available literature. It is shown that the proposed method can be easily applied to obtain rational, reliable, economical and practical designs for Reinforced Concrete Moment Resisting Frames (RCMRFs) while it is converged after a few analyses.

A Developmental Study on the Wood-frame House Construction Method in Hilly Areas (구릉지형 목조주택의 시공기법 개발)

  • Choi, Jang-Soon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.4 no.3
    • /
    • pp.53-62
    • /
    • 2002
  • This study aims at the development on the wood-frame house construction method in hilly areas. To obey the trend of public opinion to prohibit the troublesome development on a large scale in preparing housing sites, the small housing site development in hilly areas is on the rise and consequently wood-frame house which harmonized natural topography, geographical feature and environment in hilly areas is needed. The main contents are how to make housing sites, how to make roads, how to make pedestrian ways and surroundings of water to run downhill, how to locate house, how to make between road and house, how to view inner and outer and how to make retaining wall on the wood-frame house construction method in hilly areas.

  • PDF

Pseudo plastic zone analysis of steel frame structures comprising non-compact sections

  • Avery, P.;Mahendran, M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.371-392
    • /
    • 2000
  • Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. The pseudo plastic zone method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established by comparison with a comprehensive range of analytical benchmark frame solutions. The pseudo plastic zone method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.

Frame Distribution Methods for Link Aggregation between 10GbE Switches (10GbE 스위치간 링크 집합을 위한 프레임 분배방식)

  • 이호영;이숭희;이종협
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.945-950
    • /
    • 2003
  • The link aggregation between 10GbE switches requires an advanced frame distribution method to be properly and efficiently applied. The fixed or dynamic frame distribution methods, formerly proposed, cannot fully utilize the aggregated links, where the receiving terminal only attaches to a pre-specified link among multiple physical links. A frame distribution method using tagging is proposed for the link aggregation between 10GbE switches to solve this problem. We compared the performance of the proposed method with those of the fixed and dynamic frame distribution methods. As a result, the proposed method shows a better performance when the applied load is below 0.7 and the average length of the frames is longer than 954 bytes.