• Title/Summary/Keyword: A-contraction

Search Result 2,562, Processing Time 0.036 seconds

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF

A Study on Sewing Method for Clothing Construction - The Easing Contraction by Shirring Poot- (의복구성을 위한 입체적 봉제개법에 관한 연구 -셔링 노루발에 의한 오그림 -)

  • 이명희;박정순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.6
    • /
    • pp.1107-1115
    • /
    • 1996
  • An investigation made of the easing contraction ratio according to sewing condition (seam line; wp, wf, 45$^{\circ}$ bias, stitch density; 13 stitch/cm (0.8 mm), 9 stitch/cm (1.1 mm), 6.5 stitch/ cm (1.5 mm), 5 stitch/cm (2 mm), 4 stitch/cm (2.5 mm), thread; sp 60$^{\circ}$s/2, sp 60$^{\circ}$s/3, st 60$^{\circ}$s/3, st 50$^{\circ}$s/3)) by lockstitch industrial sewing machine with shirring foot. The correlations of the easing and sewing conditions were by SPSS PC), and visual test was done by enlarged photo. The results obstained were as follows:. 1. The easing contraction ratio is increased in proportion to the low of stitch density. 2. The easing contraction ratio of wp, 45$^{\circ}$ bias is correlated with stitch density, and that of wf be with stitch density, elongation & weight. 3. The easing contraction ratio of 13 stitch/cm (0.8 mm), 9 stitch/cm (1.1 mm), 6.5 stitch/ cm (1.5 mm), 5 stitch/cm (2.0 mm) is correlated with flexible rigidity, and that of 4 stitch/ cm (2.5 mm) be with flexible rigidity and crease-resistance. 4. As a results of SPSS PC+ statistics, the easing contraction ratio is statistically correlated to the seam line, stitch density, upper thread tension, and fabric characteristics. 5. As a results of visual test by the enlarged photo, the limit of stitch density for easing contraction was 5 stitch/cm (2.0 mm).

  • PDF

Difference of Trunk Muscles Activity during Hollowing vs Bracing Contraction in Various Position (다양한 자세에 따른 복부 할로잉과 브레이싱 수축시 체간근 활성도의 차이)

  • Moon, Hyun-Ju;Cho, Sung-Hak;Goo, Bong-Oh
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate the difference of trunk muscles activity during abdominal hollowing and bracing contraction in various position. METHODS: This pilot test was carried out in a volunteer sample of normal adults(n=24) without a history of low back pain or injury. 24 subjects were randomly allocated to three groups(n=8) as a contraction method respectively. In hooklying position, trunk muscles activity of subjects was measured using EMG in various bridging position. RESULTS: Abdominal bracing contraction made to more great trunk deep and superficial muscles activity than hollowing contraction.(p<0.00) Especially, Multifidus activity was the biggest.(p<0.00) CONCLUSION: The result from this study showed that abdominal bracing contraction made to more balancing activity of trunk muscles than abdominal hollowing contraction. Thus, It will good for trunk muscles unbalanced LBP patient to improve lumbar stabilization.

Vasodilatory Effect of the Alkaloid Component from the Roots of Cynanchum wifordi Hemsley (백하수오 알칼로이드 성분의 혈관이안 효능)

  • 장기철;이동웅
    • Journal of Life Science
    • /
    • v.10 no.6
    • /
    • pp.584-590
    • /
    • 2000
  • Natural products are one of the useful source of cardiovascular drugs, in particular, when they have antioxidant activity. Gagaminine, an alkaloid isolated from the roots of Cynanchum wilfordi Hemsley, has been reported to potently inhibit the aldehyde oxidase activity ({TEX}$IC_{50}${/TEX}=0.8$\mu$M) and reduce lipid peroxidation. However, the effect of gagaminine on vascular smooth muscle has not yet been investigated. In the present study, we examined whether gagaminine relaxes vascular smooth muscle by isometric tension study. In order to observe its relaxation effect on the arteries, conductivel vessel (rat thoracic aorta) and resistance vessel (pig coronary artery) were purposely used. Results indicated that gagaminine relaxed in a concentration-dependent manner $\alpha$-adrenoceptor agonist, phenylephrine (PE)-induced contraction of rat aorta. Pretreatment with gagaminine inhibited PE-induced contraction, noncompetitively. {TEX}$Ca^{2+}${/TEX}-induced contraction was significantly diminished by gagaminine. In pig coronary artery, gagaminine relaxed thromboxane receptor (U 46619)-mediated contraction in dose-dependent manner. Pretreatment with gagaminine also reduced the maximum contraction induced by KCl. These observations strongly suggest that agagminnine relaxes vascular smooth muscle, irrespective of both resistance and conductive artery. We demonstrate that gagaminine, a potent natural antioxidant, has a significant vasodilatory effect and its action mechanism van be ascribed at least in part to {TEX}$Ca^{2+}${/TEX} antagonistic action as evidenced by inhibition {TEX}$Ca^{2+}${/TEX}-induced contraction (rat aorta) and KCl-induced contraction (porcine artery). Furthermore, neither $\alpha$ -adrenoceptor nor thromboxane receptor seems responsible for the relaxation of gagaminine.

  • PDF

Role of G-protein in the Contraction of Rabbit Trachealis Muscle (토끼 기관평활근 수축에서 G Protein의 역할)

  • Jung, Jin-Sup;Hwang, Tae-Ho;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.353-362
    • /
    • 1990
  • Fluoride (F-), a known stimulator of G-protein, induced strong contraction in rabbit trachealis muscle. $AlCl_3\;(5{\sim}20\;{\mu}M)$, which is required for G-protein stimulation by $F^-$, potentiated the contractile response to $F^-$. $Ca^{2+}-removal$ and verapamil, a calcium channel blocker, inhibited the fluoroaluminate-induced contraction. Fluoroaluminate increased $^{45}Ca$ influx in the absence and presence of verapamil. In heparin-loaded muscle high $K^+-induced$ contraction was not affected, but acetylcholine and fluoroaluminate-induced contractions were inhibited. The fluoroaluminate-induced contraction was partially relaxed by isoproterenol, a stimulator of adenylate cyclase. Pertussis toxin partially inhibited fluoroaluminate-induced contraction and potentiated isoproterenol-induced relaxation in the presence of fluoroaluminate, but had no effect on acetylcholine-induced contraction and the isoproterenol-induced relaxation in the presence of acetylcholine. These results suggest that fluoroaluminate has the ability to stimulate at least two putative G-proteins in rabbit trachealis muscle; One causes $Ca^{2+}$ influx through the potential-operated $Ca^{2+}$ channel and the other induces intracellular $Ca^{2+}$ release by the increase of inositol-1, 4, 5-triphosphate.

  • PDF

Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells

  • Song, Hyun Ju;Choi, Tai Sik;Chung, Fa Yong;Park, Sun Young;Ryu, Jung Soo;Woo, Jae Gwang;Min, Young Sil;Shin, Chang Yell;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2006
  • We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.

Development of a Fatigue Index Based on the Measurement of Localized Muscular Fatigue During the Cyclic Isometric Contraction (주기적 등척성 수축에서의 국소근육피로 측정을 통한 피로지수의 개발)

  • Jung, So-Ra;Chung, Min-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.87-96
    • /
    • 1993
  • Spectrum analysis of surface electromyogram (FMG) signals is an effective approach to the study of localized muscular fatigue during isometric contraction. Many investigators have con firmed the frequency of the EMG signals being lowered during sustained contaction. In this study, the cyclic loading tasks were performed, and a comparison was made for the median power frequency shift pattern of the EMG signals with the sustained contraction of the same load. The median power frequency shift of the EMG signals for the cyclic loading task was found to be a part of that for the sustained contraction. Based on this result, a new muscle fatigue index was computed by normalizing the duration of the sustained contraction. A fatigue index was obtained as a function of exertion level and the work/rest schedule. With the proposed fatigue index, it is possible to evaluate or predict the degree of muscular fatigue for a physically demanding task.

  • PDF

The Relationship of the L-type $Ca^{2+}$ Channel on the Depolarization-and Depletion of SR $Ca^{2+}$ -induced Smooth Muscle Contraction and Intracellular $Ca^{2+}$ Mobilization (탈분극과 근장그물 내 $Ca^{2+}$ 고갈-유도 평활근의 수축 및 세포 내 $Ca^{2+}$ 변동에 관여하는 L-형 $Ca^{2+}$ 통로의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.5
    • /
    • pp.65-76
    • /
    • 2007
  • Purpose: It is generally accepted that smooth muscle contraction is triggered by intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) released from intracellular $Ca^{2+}$ stores such as sarcoplasmic teticulum (SR) and from the extracellular space. The increased $[Ca^{2+}]^i$ can phosphorylate the 20,000 dalton myosin light chain $(MLC_{20})$ by activating MLC kinase (MLCK), and this initiates smooth muscle contraction. In addition to the $[Ca^{2+}]_i$MACK-tension pathway, a number of intracellular signal molecules, including mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and others, play important roles in the regulation of smooth muscle contraction. However, the mechanisms regulating contraction of depletion of SR $Ca^{2+}$ in mouse gastric smooth muscle strips is not still clear. Methods: To investigate the rotes of $Ca^{2+}$ influx and SR $Ca^{2+}$ release channel on gastric motility, isometric contraction and $[Ca^{2+}]_i$ were examined in mouse gastric smooth muscle strips. Results: High KCl, ryanodine, an activator of $Ca^{2+-}$induced $Ca^{2+}$ release channel, and cyclopiazonic acid (CPA), an inhibitor of SR $Ca^{2+-}$ATPase evoked a sustained increase in muscle contraction and $[Ca^{2+}]_i$. These increases induced by high KCl, ryanodine, and CPA were partially blocked by application of verapamil ($10{\mu}M$), a L-type $Ca^{2+}$ channel inhibitor. Additionally, in $Ca^{2+-}$free solution (1 mM EGTA), ryanodine and CPA had no effect contraction and $[Ca^{2+}]_i$ in fundic muscle strips. Conclusion: These results that extracellular $Ca^{2+}$ influx and depletion of SR trigger $Ca^{2+}$ influx through verapamil-sensitive $Ca^{2+}$ channel, and extracellular and SR $Ca^{2+}$ store may functionally involve in the subcellular $Ca^{2+}$ mobilization in mouse gastric muscle.

  • PDF

The Effect of Aging on the Mechanism of Muscle Fatigue during Sustained Submaximal Isometric Contraction (노화가 지속적 최대하강도 수축시 근피로 기전에 미치는 영향)

  • Yoon, Te-Jin;Kim, Yong-Won;Chung, Chul-Soo;Hunter, Sandra K
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.51-59
    • /
    • 2005
  • To examine the influence of aging on the mechanism of muscle fatigue, we compared the magnitude of central and peripheral fatigue in young and old women before, during and after a sustained submaximaI isometric contraction of elbow flexor muscles. Twelve women (6 young. $20.7{\pm}1.2$ years and 6 old, $68.8{\pm}29$ years) performed a contraction at 20% of maximal voluntary contraction (MVC) torque with their non-dominant arm. The old women were weaker than the young women, however their endurance time for the 20% contraction was longer compared with the young women ($1822{\pm}444$ vs. $1061{\pm}678$ sec, P <. 05). Both groups had a similar reduction in voluntary activation ratio (VA) during and after the fatiguing contraction. However, the old women showed much greater variability in VA before and after the contraction ($91.61{\pm}4.54%$ and $76.70{\pm}19.55\;%$ range of $79{\sim}99$ to $87{\sim}99%$ respectively) compared with the young women ($95.71{\pm}1.86\;%$ and $83.46{\pm}7.57\;%$ range of $39{\sim}75$ to $69{\sim}90%$, respectively). Furthermore, the EMG activity of the elbow flexor muscles and triceps brachii was greater for the old women compared with the young women throughout the fatiguing contraction, indicating different activation strategies with age. Indices of peripheral fatigue including twitch properties, showed that fatigue within the muscle was more rapid for the young women compared with the old women. These results suggest that although old women are weaker than young women, they have greater endurance due to mechanisms within muscle. Furthermore, old women showed great variability in their ability to optimally activate all muscle fiber compared with young women for an isometric contraction.

Reflex Responses of the Extraocular Muscles upon Ampullary Nerve Stimulation in Rabbits (가토반규관신경자극(家兎半規管神經刺戟)에 대(對)한 외안근(外眼筋)의 반응(反應)에 관(關)하여)

  • Kim, Sa-Won
    • The Korean Journal of Physiology
    • /
    • v.4 no.1
    • /
    • pp.59-67
    • /
    • 1970
  • In recent observations on vestibular eye movements in mammals, reported by several different workers, it was indicated that the pattern of reflex eye movement from semicircular canal nerve stimulation in rabbits was different from that observed in the other species such as cats and dogs. Observing the different anatomical features of the extraocular muscles of rabbits, Kim ascribed the different pattern of eye movement of rabbits to the functional difference of inferior and superior oblique muscles from those of other species. Present experiment was carried out to elucidate a physiological mechanism underlying in such particular pattern of reflex eye movement in rabbits. An individual canal nerve was selectively stimulated, under a dissecting microscope, by a fine electrode induced into an ampulla through a hole provided on the wall of corresponding osseous canal, and responses of the extraocular muscles were checked by recording the isotonic changes of muscle length. Following results were obtained. 1. Direct stimulation of the superior or inferior oblique muscles Produced upward or downward movement of the eye turning toward medial side respectively. 2. Stimulation of the unilateral canal nerve Produced a marked contraction of a main contracting ocular muscle and simultaneous relaxation of an antagonistic muscle in both eyes. Less potent contraction of an additional ocular muscle was observed and it appeared to augment the function of the main contracting muscle in the ipsilateral eye. 3. Stimulation of superior semicircular canal nerve caused a primary contraction of superior rectus, synergic contraction of superior oblique and relaxation of inferior rectus in ipsilateral eye. Contraction of inferior oblique and relaxation of superior oblique were observed in the contralateral eye. 4. Stimulation of lateral semicircular canal nerve produced a primary contraction of medial rectus, synergic contraction of superior oblique and relaxation of lateral rectus in the ipsilateral eye. Contraction of lateral rectus and relaxation of medial rectus were observed in the contralateral eye. 5. Stimulation of inferior semicircular canal nerve produced a primary contraction of superior oblique, synergic contraction of superior rectus and relaxation of inferior oblique in the ipsilateral eye. Contraction of. inferior rectus and relaxation of superior rectus were observed in the contralateral eye. 6. Upon stimulation of individual canal nerve, the pattern of eye movement in rabbits is different from those of cats, however, the responses of the extraocular muscles appear to be similar in two species. Therefore, it is concluded that the different Pattern of eye movement in both species are not due to the possible difference of vestibule-ocular reflex pathways but to the functional difference of superior and inferior oblique muslces.

  • PDF