• Title/Summary/Keyword: A-Scan

Search Result 4,790, Processing Time 0.031 seconds

Test Generation of Sequential Circuits Using A Partial Scan Based on Conversion to Pseudo-Combinational Circuits (유사 조합 회로로의 변환에 기초한 부분 스캔 기법을 이용한 디지털 순차 회로의 테스트 기법 연구)

  • Min, Hyoung-Bok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.504-514
    • /
    • 1994
  • Combinational automatic test pattern generators (CATPG) have already been commercialized because their algorithms are well known and practical, while sequential automatic test pattern generators(SATPG) have been regarded as impractical because they are computationally complex. A technique to use CATPG instead of SATPG for test generation of sequential circuits is proposed. Redesign of seauential circuits such as Level Sensitive Scan Design (LSSD) is inevitable to use CATPG. Various partial scan techniques has been proposed to avoid full scan such as LSSD. It ha sbeen reported that SATPG is required to use partial scan techniques. We propose a technique to use CATPG for a new partial scan technique, and propose a new CATPG algorithm for the partially scanned circuits. The partial scan technique can be another choice of design for testability because it is computationally advantageous.

  • PDF

A Study on Repair of Scan Design Rule Violations at Clock and Reset Pins of Scan Cells (스캔셀의 Clock과 Reset핀에서의 스캔 설계 Rule Violations 방지를 위한 설계 변경)

  • Kim, In-Soo;Min, Hyoung-Bok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.93-101
    • /
    • 2003
  • Scan design is a structured design-for-testability technique in which flip-flops are re-designed so that the flip-flops are chained in shift registers. The scan design cannot be used in a design with scan design rule violations without modifying the design. The most important scan design rule is concerning clock and reset signals to pins of the flip-flops or scan cells. Clock and Reset pins of every scan cell must be controllable from top-level ports. We propose a new technique to re-design gated clocks and resets which violate the scan design rule concerning the clock and reset pins. This technique substitutes synchronous sequential circuits for gated clock and reset designs, which removes the clock and reset rule violations and improves fault coverage of the design. The fault coverage is improved from $90.48\%$ to $100.00\%$, from $92.31\%$ to $100.00\%$, from $95.45\%$ to $100.00\%$, from $97.50\%$ to $100.00\%$ in a design with gated clocks and resets.

Digital Scan Converter Algorithm for Ultrsound Sector Scanner (초음파 섹터 스캐너를 위한 디지털 스캔 변환 기법)

  • 김근호;오정환
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.469-478
    • /
    • 1996
  • In the conventional digital ultrasound scanner, the reflected signal is sampled either in polar coordinates of R-$\theta$ method, or in Cartesian coordinates of uniform ladder algorithm (ULA). The R-$\theta$ scan method necessitates a coordinate transform process which makes hardware complex in comparison with ULA scan mrthoA In spite of this complexity, R-$\theta$ method has a good resolution in ultrasonographic (US) image, since scan direction of the US imaging is a radial direction. In this paper, a new digital scan converter is proposed, which is named the radius uniform ladder algorithm (RULA). The RULA has the rome scan direction as the US scanning in the radial direction and as the display space in the $\theta$ direction. In tllis new approach, sampled points we uniformly distributed in each horizontal line i.n well as in each radial ray so that the data are displayed in the Cartesian coordinates by the 1-D interpolation process. The propped algorithm has an uniform resolution in the periphery and the center field in comparison with equi-angle ULA and equi-interval ULA. To extend the scan angle, concentric square raster sampling (CSRS) is adopted with reduction of discontinuities on the junctions between horizontal scan and vertical scan. The discontinuities are reduced by using the hmction filtering along the $\theta$ direction.

  • PDF

The Change of Total Scan Time in Accordance with the Time of the Decision of Scan Time (스캔 시간의 결정시기에 따른 총 스캔 시간 변화에 관한 연구)

  • Lee, Jong-Hun;Ryu, Jae-Kwang;Chung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.81-85
    • /
    • 2009
  • Purpose: The examination of nuclear medicine observes the change in accordance with the time elapsed in the same region purposed and there are many examinations to acquire the image during the same term. At this time, the same parameter should be applied. The hepatobiliary scan, lung scan etc, are the acquired examination in the divided time with a regular term. Pre-set time that is applied in continued next image is set in order to acquire the fixed counts. The same scan time should be applied for each image. This study will look for the rational plan and analyze the change of scan time in accordance with the time of the decision of scan time at examination that pre-set time is applied. Methods: The hapatobiliary scan that use the radio pharmaceutical $^{99m}Tc$-mebrofenin is choosed as compensation from Jan. 2009 to Mar. 2009 in the department of nuclear medicine in ASAN MEDICAL CENTER. Scan is started after 5 minutes from when 222 MBq (6 mCi) is injected to patient. We let patient stand up between both detectors, and possibly close to the front of detector. When scan time reach 10%, 25%, 50%, 75% of total scan time, we measured the expected total scan time. After finishing all of scan, we compared the total scan time and the expected total scan time, while image is acquiring. and we observed the change of scan time in accordance with radio activity by using phantom. Results: After starting scan, a difference of when scan time reach 10%, 25%, 50%, 75% of total scan time is that the biggest difference is 5 seconds on 10%. There statistically is difference between 25% (t:2.88, p<0.01) and 50% (t:2.05, p<0.01). Conclusions: When the same the scan time is applied in the examination that acquire the many frame, concluding the same scan time has a important effect on a quantitative analysis. Although method that decide the scan time after finish all of the examinations, there is a few problem to apply practical affairs. This may cause an inaccurate result on the examination that need a quantitative analysis. We think that operator should try to improve it. At least, after reach 50% of total scan time, deciding the total scan time mean that you can minimize error of a quantitative analysis caused by unmatched scan time from a gap of image.

  • PDF

Thallium-201 Scan in Bone and Softtissue Sarcoma - Comparison with Tc-99m-MIBI and Tc-99m-MDP Scan - (악성 골 및 연부조직 종양에서 Tl-201 SCAN의 진단적 효능 - Tc-99m-MIBI 및 Tc-99m-MDP scan과의 비교 -)

  • Shin, Duk-Seop;Cho, Ihn-Ho;Ahn, Jong-Chul;Ahn, Myun-Hwan;Lee, Sang-Ho
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • PURPOSE : The purpose of this study is to know the ability of detecting malignant tumor tissue by Tl-201 scan, and to compare with that of Tc-99m-MIBI and Tc-99m-MDP scan. MATERIAL AND METHODS : Between February 1994 and December 1995,38 unselected patients with various bone pathologies were studied prospectively. Eighteen had malignant bone and soft tissue pathologies, while twenty had benign. All patients were studied with Tl-201, Tc-99mMIBI and Tc-99m-MDP scan prior to surgical biopsy. PICKER Prism 2000 gamma camera with high resolution parallel hole collimator was used for scanning. To avoid the interaction of isotope, the early(30min.) and delayed phase(3hrs.) of Tl-20l scan was performed first and Tc-99m-MIBI scan was performed after 30 minutes, and then Tc-99m-MDP scan 48 hours later. The scan images were visually evaluated by a blinded nuclear medicine physician. We could find true positive, true negative, false positive and false negative by the comparison of results with those of biopsy. We calculated positive and negative predictive value(%), sensitivity(%), specificity(%) and diagnostic accuracy(%) of each scan. RESULT : The results of each scan were 85.7, 100, 100, 85, 92.1% in Tl-201, 81, 94.1, 94.4, 80, 86.8% in Tc-99m-MIBI and 50, 66.7, 88.9, 20, 52.6% in Tc-99m-MDP scan. As a conclusion, Tl-201 scan was the most specific and accurate method for detecting malignant tumor tissue. Tc-99m-MIBI scan was also good for malignant tumor searching. CONCLUSION : With our results, we can use Tl-201 scan to differentiate benign from malignant tumor, and to evaluate the response of preoperative chemotherapy or radiotherapy, and to determine the residual tumor or local recurrence. For the better result, we need to have a more detail information about false positive cases and a more objective and quantitative reading technique.

  • PDF

Direction Augmented Probabilistic Scan Matching for Reliable Localization (신뢰성 높은 위치 인식을 위하여 방향을 고려한 확률적 스캔 매칭 기법)

  • Choi, Min-Yong;Choi, Jin-Woo;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1234-1239
    • /
    • 2011
  • The scan matching is widely used in localization and mapping of mobile robots. This paper presents a probabilistic scan matching method. To improve the performance of the scan matching, a direction of data point is incorporated into the scan matching. The direction of data point is calculated using the line fitted by the neighborhood data. Owing to the incorporation, the performance of the matching was improved. The number of iterations in the scan matching decreased, and the tolerance against a high rotation between scans increased. Based on real data of a laser range finder, experiments verified the performance of the proposed direction augmented probabilistic scan matching algorithm.

Usefulness Evaluation of HRCT using Reconstruction in Chest CT (흉부CT 검사 시 HRCT 영상 재구성의 유용성)

  • Park, Sung-Min;Kim, Keung-Sik;Kang, Seong-Min;Yoo, Beong-Gyu;Lee, Ki-Bae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Purpose : Skip the repetitive HRCT axial scan in order to reduce the exposure of patients during chest HRCT scan, Helical Scan Data into a reconstructed image, and exposure of the patient change and visually evaluate the usefulness of the HRCT images. Materials and method : Patients were enrolled in the survey are 50 people who underwent chest CT scans of patients who presented to the hospital from January 2015 to March 2015. 50 people surveyed 22 people men and 28 people women people showed an average distribution of 30 to 80 years age was 48 years. 50 patients to Somatom Sensation 64 ch (Siemens) model with 120 kVp tube voltage to a reference mAs tube current to mAs (Care dose, Siemens) as a whole, including the lungs and the chest CT scan was performed. Scan upon each patient CARE dose 4D (Automatic exposure control, Siemens Medical Solution Erlangen, Germany) was to maintain the proper radiation dose scan every cross-section through a device that automatically adjusts the tube current of. CT scan is the rotation time of the Tube slice collimation, slice width 0.6 mm, pitch factor was made under the terms of 1.4. CT scan obtained after the raw data (raw data) to the upper surface of the axial images and coronal images for each slice thickness 1 mm, 5 mm intervals in the high spatial frequency calculation method (hight spatial resolution algorithm, B60 sharp) was the use of the lung window center -500 HU, windows were reconstructed into images in the interval -1000 HU to see. Result : 1. Measure the total value of DLP 50 patients who proceed to chest CT group A (Helical Scan after scan performed with HRCT) and group B (Helical Scan after the HR image reconstruction to the original data) compared with the group divided, analysis As a result of the age, but show little difference for each age group it had a decreased average dose of about 9%. 2. A Radiation read the results of the two Radiologist and a doctor upper lobe and middle lobe of the lung takes effect the visual evaluation is not a big difference between the two images both, depending on the age of the patient, especially if the blood vessels of the lower lobe (A: 3.4, B: 4.6) and bronchi(A: 3.8, B4.7) image shake caused by breathing in anxiety (blurring lead) to the original data (raw data) showed that the reconstructed image is been more useful in diagnostic terms. Conclusion : Scan was confirmed a continuous, rapid motion video to get Helical scan is much lower lobe lung reduction in visual blurring, Helical scan data to not repeat the examination by obtaining HRCT images reorganization reduced the exposure of the patient.

  • PDF

Partial Scan Design based on Levelized Combinational Structure

  • Park, Sung-Ju
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.7-13
    • /
    • 1997
  • To overcome the large hardware overhead attendant in the full scan design, the concept of partial scan design has emerged with the virtue of less area and testability close to full scan. Combinational Structure has been developed to avoid the use of sequential test generator. But the patterns sifted on scan register have to be held for sequential depth period upon the aid of the dedicated HOLD circuit. In this paper, a new levelized structure is introduced aiming to exclude the need of extra HOLD circuit. The time to stimulate each scan latch is uniquely determined on this structure, hence each test pattern can e applied by scan shifting and then pulsing a system clock like the full scan but with much les scan flip-flops. Experimental results show that some sequential circuits are levelized by just scanning self-loop flip-flops.

  • PDF

Scan-to-Geometry Mapping Rule Definition for Building Plane Reverse engineering Automation (건축물 평면 형상 역설계 자동화를 위한 Scan-to-Geometry 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, many scan projects are gradually increasing for maintenance, construction. The scan data contains useful data, which can be generated in the target application from the facility, space. However, modeling the scan data required for the application requires a lot of cost. In example, the converting 3D point cloud obtained from scan data into 3D object is a time-consuming task, and the modeling task is still very manual. This research proposes Scan-to-Geometry Mapping Rule Definition (S2G-MD) which maps point cloud data to geometry for irregular building plane objects. The S2G-MD considers user use case variability. The method to define rules for mapping scan to geometry is proposed. This research supports the reverse engineering semi-automatic process for the building planar geometry from the user perspective.

Establishment of Injection Protocol of Test Bolus for Precise Scan Timing in Canine Abdominal Multi-Phase Computed Tomography

  • Choi, Sooyoung;Lee, In;Choi, Hojung;Lee, Kija;Park, Inchul;Lee, Youngwon
    • Journal of Veterinary Clinics
    • /
    • v.35 no.3
    • /
    • pp.93-96
    • /
    • 2018
  • This study aimed to establish an injection protocol to determine the precise CT scan timing in canine abdominal multi-phase CT using the test bolus method. Three dynamic scans with different contrast injection parameters were performed using a crossover design in eight normal beagle dogs. A contrast material was administered at a fixed dose of 200 mg iodine/kg as a test bolus for dynamic scans 1 and 2, and 600 mg iodine/kg as a main bolus for dynamic scan 3. The contrast materials were administered with 1 ml/s in dynamic scan 1, and 3 ml/s in dynamic scan 2 and 3. The mean arrival time to the appearance of aortic enhancement in dynamic scan 3 was similar to that in dynamic scan 2, and different significantly to that in dynamic scan 1. The mean arrival time to the peak aortic and pancreatic parenchymal enhancement in dynamic scan 3 was similar to that in dynamic scan 1, and different significantly to that in dynamic scan 2. In multi-phase CT scan, a test bolus should be injected with the same injection duration of a main bolus, to obtain the precise arrival times to peak of arterial or pancreatic parenchymal enhancement.