• Title/Summary/Keyword: A priori Test

Search Result 46, Processing Time 0.024 seconds

Improved Super-Resolution Algorithm using MAP based on Bayesian Approach

  • Jang, Jae-Lyong;Cho, Hyo-Moon;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.35-37
    • /
    • 2007
  • Super resolution using stochastic approach which based on the Bayesian approach is to easy modeling for a priori knowledge. Generally, the Bayesian estimation is used when the posterior probability density function of the original image can be established. In this paper, we introduced the improved MAP algorithm based on Bayesian which is stochastic approach in spatial domain. And we presented the observation model between the HR images and LR images applied with MAP reconstruction method which is one of the major in the SR grid construction. Its test results, which are operation speed, chip size and output high resolution image Quality. are significantly improved.

  • PDF

A function space approach to study rank deficiency and spurious modes in finite elements

  • Sangeeta, K.;Mukherjee, Somenath;Prathap, Gangan
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.539-551
    • /
    • 2005
  • Finite elements based on isoparametric formulation are known to suffer spurious stiffness properties and corresponding stress oscillations, even when care is taken to ensure that completeness and continuity requirements are enforced. This occurs frequently when the physics of the problem requires multiple strain components to be defined. This kind of error, commonly known as locking, can be circumvented by using reduced integration techniques to evaluate the element stiffness matrices instead of the full integration that is mathematically prescribed. However, the reduced integration technique itself can have a further drawback - rank deficiency, which physically implies that spurious energy modes (e.g., hourglass modes) are introduced because of reduced integration. Such instability in an existing stiffness matrix is generally detected by means of an eigenvalue test. In this paper we show that a knowledge of the dimension of the solution space spanned by the column vectors of the strain-displacement matrix can be used to identify the instabilities arising in an element due to reduced/selective integration techniques a priori, without having to complete the element stiffness matrix formulation and then test for zero eigenvalues.

Partial Quantification in Principal Component Analysis

  • Hye Sun Suh;Myung Hoe Huh
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.637-644
    • /
    • 1997
  • Sometimes, the first principal component may come logically from the established knowledge and premises. For example, for the high school students' test scores of Korean, English, Mathematics, Social Study, and Science, it is natural to define the first principal component as the average of all subject scores. In such cases, we need to respect both the background knowledge and the data exploration. The aim of this study is to find the remaining components in principal component analysis of multivariate data when the first principal component is defined a priori by the researcher. Moreover, we study related matrix decomposition and their application to the graphical display.

  • PDF

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.

Structural identification of a steel frame from dynamic test-data

  • Morassi, A.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.237-258
    • /
    • 2001
  • Structural identification via modal analysis in structural mechanics is gaining popularity in recent years, despite conceptual difficulties connected with its use. This paper is devoted to illustrate both the capabilities and the indeterminacy characterizing structural identification problems even in quite simple instances, as well as the cautions that should be accordingly adopted. In particular, we discuss an application of an identification technique of variational type, based on the measurement of eigenfrequencies and mode shapes, to a steel frame with friction joints under various assembling conditions. Experience has suggested, so as to restrict the indeterminacy frequently affecting identification issues, having resort to all the a priori acknowledged information on the system, to the symmetry and presence of structural elements with equal stiffness, to mention one example, and mindfully selecting the parameters to be identified. In addition, considering that the identification techniques have a local character and correspond to the updating of a preliminary model of the structure, it is important that the analytical model on the first attempt should be adequately accurate. Secondly, it has proved determinant to cross the results of the dynamic identification with tests of other typology, for instance, static tests, so as to fully understand the structural behavior and avoid the indeterminacy due to the nonuniqueness of the inverse problem.

Characteristics of a direct system parameter estimation method (시스템 매개변수 직접추정법의 특성)

  • Ju, Young-Ho;Jo, Gwang-Hwan;Lee, Gun-Myung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1480-1490
    • /
    • 1997
  • A method by which the system parameter matrices can be estimated from measured time data of excitation force and acceleration has been studied. The acceleration data are integrated numerically to obtain the velocities and displacements, and the systm parameters are estimated from these data by solving equations of motion. The characteristics of the method have been investigated through its application to simulated data of 1 DOF and 2 DOF systems and experimental data measured from a simple structure. It was found that the method is very sensitive to measurement noise and the accuracy of the estimated parameters can be improved by averaging the repeatedly measured data and removing the noise. One of the main advantages of the parameter estimation method is that no a priori information about the system under test is required. The method can be easily extended to non-linear parameter estimation.

Numerical simulation of coextrusion process of viscoelastic fluids using the open boundary condition method

  • Park, Seung-Joon;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.37-45
    • /
    • 2001
  • Numerical simulation of coextrusion process of viscoelastic fluids within a die has been carried out. In the coextrusion process velocity profile at the outflow boundary is not known a priori, which makes it difficult to impose the proper boundary condition at the outflow boundary. This difficulty has been avoided by using the open boundary condition (OBC) method. In this study, elastic viscous stress splitting (EVSS) formulation with streamline upwind (SU) method has been used in the finite element method. In order to test the validity of the OBC method, comparison between the results of fully developed condition at the outlet and those of OBC has been made for a Newtonian fluid. In the case of upper convected Maxwell (UCM) fluid, the effect of outflow boundary condition on the interface position has been investigated by using two meshes having different downstream lengths. In both cases, the results with the OBC method showed reasonable interface shape. In particular, for the UCM fluid the interface shape calculated with OBC was independent of the downstream length, while the results with the zero traction condition showed oscillation of interface position close to the outlet. Viscosity difference was found to be more important than elasticity difference in determining the final interface position. However, the overshoot of interface position near the con-fluent point increased with elasticity.

  • PDF

Genomic partitioning of growth traits using a high-density single nucleotide polymorphism array in Hanwoo (Korean cattle)

  • Park, Mi Na;Seo, Dongwon;Chung, Ki-Yong;Lee, Soo-Hyun;Chung, Yoon-Ji;Lee, Hyo-Jun;Lee, Jun-Heon;Park, Byoungho;Choi, Tae-Jeong;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1558-1565
    • /
    • 2020
  • Objective: The objective of this study was to characterize the number of loci affecting growth traits and the distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic partitioning, and hierarchical Bayesian mixture models. Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori information included setting the fixed additive genetic variance to a pre-specified value; the first mixture component was set to zero, the second to 0.0001×σ2g, the third 0.001×σ2g, and the fourth to 0.01×σ2g. BayesR fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed distribution. Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic region explained approximately 10% of the variance against total additive genetic variance and body weight heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained only 0.04% to 0.5% of the genetic variance Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small effects on growth traits at different ages were also identified.

Improving Covariance Based Adaptive Estimation for GPS/INS Integration

  • Ding, Weidong;Wang, Jinling;Rizos, Chris
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.259-264
    • /
    • 2006
  • It is well known that the uncertainty of the covariance parameters of the process noise (Q) and the observation errors (R) has a significant impact on Kalman filtering performance. Q and R influence the weight that the filter applies between the existing process information and the latest measurements. Errors in any of them may result in the filter being suboptimal or even cause it to diverge. The conventional way of determining Q and R requires good a priori knowledge of the process noises and measurement errors, which normally comes from intensive empirical analysis. Many adaptive methods have been developed to overcome the conventional Kalman filter's limitations. Starting from covariance matching principles, an innovative adaptive process noise scaling algorithm has been proposed in this paper. Without artificial or empirical parameters to be set, the proposed adaptive mechanism drives the filter autonomously to the optimal mode. The proposed algorithm has been tested using road test data, showing significant improvements to filtering performance.

  • PDF

Product Category and Shopping Options of Logistic Service Quality

  • KIM, Ok;CHEON, Hongsik J.
    • Journal of Distribution Science
    • /
    • v.18 no.8
    • /
    • pp.113-125
    • /
    • 2020
  • Purpose: The purpose of this paper is to investigate the effect of interaction between product category (fresh vs. indulgent product) and shopping options (shipping charge and delivery time) on customer satisfaction and purchase intent in an e-commerce context. When ordering groceries online, consumers begin to allocate a larger share of their grocery budget toward product categories that generally contain healthier items at the expense of product categories that generally contain more indulgent products. Moreover, customers are extremely sensitive to shipping options such as shipping charges and delivery time. Therefore, this research investigates the issue at a more segmented level to focus on the impact that one dimension of logistics service quality - product category, shipping charge, and delivery time have on customer satisfaction and purchase intent. Research design, data, and methodology: To test the theoretically derived priori hypotheses concerning product category, shipping charges, delivery time, satisfaction, and purchase intent, this research presented a scenario-based experiment. Eight treatment groups were assigned by the method of product category (fresh produce vs. indulgent product), shipping charge (free vs. paid), and delivery time (one-day vs. two to three days). A total of 240 subjects were divided into groups and exposed to one of the eight scenarios. Participant's purchase intention was the dependent variable, and ANOVA and L-matrix were used to analyze for main and interactive effects between factors. Conclusions: Results indicated that in tests 1 and 2, free shipping and fast delivery time increased consumer satisfaction as well as purchase intent, and fast delivery moderated the impact of free shipping on consumer satisfaction and purchase intent. Test 3 showed that the effect of free shipping on consumer satisfaction and purchase intent moderated by fast delivery for indulgent products. In contrast, fast delivery for fresh products moderated the effect of paid shipping on consumer satisfaction and purchase intent. Consistent with this proposed mechanism, the relative importance of fresh produce versus indulgent products highlights the effect of shipping options on consumer satisfaction and purchase intent when ordering the target product in an e-commerce context. We conclude with a discussion of the theoretical and practical implications of our findings.