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Partial Quantification in Principal Component Analysis*

Hye-Sun Suh!) and Myung-Hoe Huh?

Abstract

Sometimes, the first principal component may come logically from the established
knowledge and premises. For example, for the high school students’ test scores of
Korean, English, Mathematics, Social Study, and Science, it is natural to define the
first principal component as the average of all subject scores. In such cases, we need
to respect both the background knowledge and the data exploration.

The aim of this study is to find the remaining components in principal component
analysis of multivariate data when the first principal component is defined a priori by
the researcher. Moreover, we study related matrix decomposition and their application
to the graphical display.

1. Introduction

Principal component analysis(PCA) was first developed by Karl Pearson and Harold
Hotelling (Jolliffe, 1986), as a way to reduce the dimensionality of the data set, achieved by
principal components which are linear combinations of variables. In a similar vein, Mardia,
Kent and Bibby (1979), Anderson (1984) and Jolliffe (1986) explain principal component
analysis as a way to find linear combinations which have the maximum variance, or the best
explanatory power.

In contrast, Lebart (1984) of French school of data analysis re-derives PCA as a descriptive
analysis tool of multivariate data in the Euclidean space. Thus, PCA is regarded as a special
case of correspondence analysis.

In this paper, we propose a special kind of PCA that is suitable in situations that the first
principal component is given a priori. Such cases arise when the presupposition requires that
the first principal component should be of certain form. Then, we need to harmonize both the
background knowledge and the data exploration.
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In psychometrics and sociometrics, “quantification” is the terminology referring to the
assignment of numeric values to qualitative objects. Thus, PCA can be viewed as a
quantification method of n rows and p columns of the data matrix. By that reason, we name
the statistical procedure of this study "partial quantification” in PCA.

The partial quantification procedure is developed in Section 2, followed by a data matrix
decomposition in Section 3 and a graphical representation of the multivariate data in Section 4.
A numerical illustration is given in Section 5.

In the writing hereafter, we use the following notations:

> ¢
X1
X: nXxp data matrix, X = : =( X1, ", X )
> ¢
Xn
- - 3 n
Thus x,, -, x, € R* ;, x, -, x, € R".

Here, we assume that X is centered and scaled, if necessary.

2. Partial Quantification

Suppose that the first principal component is defined a priori by

> ¢t >

$i = X vy, i=1,",m

> et . . .
or the row elements of X v;, where v, is the size p unit vector. Then, for the next steps
to extract remaining information contained in multivariate observations, decompose x; into
two parts:
=80+ (x;—s; v1), i=1,-,n.

Hence we may restart usual PCA on

- - .

X;—S; v, t=1," nm.

Therefore, we obtained the following partial quantification algorithm in PCA.

Step 1: When unit vector 7}1 is given as the first principal component coefficients,
replace the data matrix X by
Xm=X(I,—P;), 2.1)

-1

- >, . . . -
where P; = v (v' v) " v’, the projection matrix on ».
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Step 2: Find the size p unit vector _1;2 so that
min | Xy — XmP;, 12!

or

max | X[HP;Z "2 !
Here, _132 is the second principal component coefficient vector, obtained by
solving an eigensystem

Xw'Xm 2 = 1 0.
Next, replace X3 by

X = XmI,— P3) . (2.2)

Step 3: Repeat Step 2 until we obtain -1;3 VTt _1;,,, remaining principal component

coefficient vectors.

Figure 1 and Figure 2 illustrate the geometirc logic of the above algorithm. Let us
denote _J’c,;lt (i=1,--,n) as the i-th row of Xp;;. Then, in Figure 1, we see that

- - .
X;1 1L v, i=1, ", n,
- - . .
where v, is the given unit vector. In Figure 2, x;; (i=1,--,n) are projected on another

unit vector —52! we easily see that the norms of projected vectors become largest when it is
parallel to -132* that is orthogonal to —z;l. In the following, when there is no confusion, we
use the notation 7)2 for —z’)z'. Thus,

and the second principal component scores are given by

_ - - .
Xi1 UZ—(x;"—kl Ul) Vy = Xx; U , i=1,, n.

More generally, —13,- (j=1,--,p) are orthogonal to each other, and the principal component

scores are given by
- : - = - > -, > . Lo
Xiy--i—1 U; = ( X — Zk{ U[) v = X U;, ]—-2,"'.b: Z—l,“',ﬂ.

Practically, _z.l,- (=2, .-, p) can be obtained by solving the eigensystem

Xm'Xm v =2 v, mMm227,
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Figure 1 Figure 2
Step 1 of Partial Quantification. Step 2 of Partial Quantification.

3. A Decomposition of Data Matrix

We will develop a decomposition of the matrix X, according to the procedure of Section 2.
From (2.1),

X=X7v v + Xy
and from (2.2),
Xy = Xm 02 v + Xpg.
Since _zjlt _52 = (, it turns out that
X=X7v 0+ X v + Xy.
Then, when uvs, *--, v, are included to approximate X further,
X=X 0 +X 0 0+ +X Dpy 01 +X 0, v, + Xy
Since R’ is p-dimensional, the remainder X[, is 0. Therefore
X=3X7% 3
Now, define A; and unit vector #; by
Ai=0'X'Xv;, wi=XvoINA;, i

Then, we can write

I
|
>

X = g“\/a—, w, v; = UDz V', (2.3)
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where

U=( ulv'"r up), V=(—1;1v'“1 _{)ﬁ ); Dﬁz diag(ﬁ,'“,m).

Since ;;t _1;, =0 G+, VV= I,. Moreover, for j, 1= 2,",p, j¥I,

w;' u o« 7' XX v, = ;itXt[I]X[I] o= n ;' v,=0 .
But, in general,
ultu]#= 0. j=2)...,p'

As a result

¢ t ¢ 1 m'f

ViV=VVi=1 ad UU=( )
m I,

where m = (my, -, m,)", mj= w, ' w; (j=2,-,p). Therefore, we call (23) as a

quasi-singular value decomposition (SVD) of the matrix X and A; as quasi-eigenvalues.

4. Biplot Representation

The biplot, proposed by Gabriel (1971), is a statistical graph showing the relative positions
of rows (observations) with the directions of columns (variables) of the data. Its validity is
based on a matrix decomposition of the data matrix

X =GH' (2.4)

which can be obtained in several ways via usual singular value decomposition (SVD) of X,
ie.
X = MD; N, (2.5
where
MM= N'N= NN =1, Dg= diag(&,,.&), &§ 22,

After applying the partial quantification, we obtain quasi-SVD (2.3) rather than SVD (2.5).
However, by taking G= UDy; and H= V, we have (24) or
xi= &' ki, i=1,,n,j=1,,5,
where Z,-t is the 7-th row vector of matrix G, and _ﬁ,- is the j-th row vector of matrix
H. Hence
x5 X Zin' Ry . i=1,w,m, j=1,,9, (26)
where _é,-(,) and —ﬁ,-(,) are, respectively, the size r subvectors of —é,- and _ﬁ; that keep the

first r elements. Therefore, n rows (observations) of X are represented in the r-dimensional



642 Hye-Sun Suh and Myung-Hoe Huh

subspace by E,(,) , t=1,--,n, and, p columns (variables) of X are represented in the
r-dimensional subspace by _I;,-(,) , J=1,,p.
Equivalently, (2.6) can be expressed as
X = Gy Hy',
where G, and H(, are respectively the submatrices of G and H with first r columns
retained.

Thus, the goodness-of-approximation index of the r-dimensional biplot for the
representation of rows may be defined by

1Gwl? _ 1UaDml? A
IG1 = T UDal™ ~ %y
At

GOA(,y =

since

I UDg; I 2 = tr(DﬁUtUDﬁ)

4
= W(Dﬁ(iﬂ I:’il)D‘/}) = JZ“/{;’.

5. A Numerical Example

To illustrate the proposed partial quantification method, consider the ability test data in du
Toit, et al. (1986). It consists of data obtained during a long-term research project in South
Africa, called Project Talent Survey in which 21 variables were measured from approximately
2800 white pupils. The first 18 variables constituting the test scores were obtained from the
pupils in the various ability tests, at three distinct educational levels. The list of variables are:

X, X;, X3¢ Number Series, X4, Xy, Xy Classification (Word Pairs),

X,, X3, X4 Figure Analogies, X5, Xy, Xy7: Verbal Reasoning,
X3, Xy, Xi5° Pattern Completion, X, X1z, X1 Word Analogies.

This numerical example deals with the partial quantification of the subset data from 28 pupils,
for the case that the first principle component is defined a priori as the simple average for all
18 variables.

As reported in Table 1, the goodness-of-approximation in two dimensional subspace is 56%
for the row representation, of which nearly 20% is contributed by the second axis. In Figure
3, observe that the number series (X7, X13) and the figure analogy (Xi4) are in one side of the
second axis, and word pairs (X1, X4) and verbal reasoning (Xs) are in the other side. So, the
second principal component represents the differential orientation toward the quantitative
aptitude (in positive direction) versus the verbal aptitude (in negative direction).
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Table 1. Principal Components and Quasi-Eigenvalues
by Partial Quantification
Principal Component Coefficient Vectors
Variables First Axis Second Axis

X, 0.235 -0.172

X, 0.235 -0.174

X, 0.235 -0.030

X, 0.235 -0.284

Xs 0.235 0.077

X 0.235 -0.259

X; 0.235 0.597

X3 0.235 -0.065

X, 0.235 0.016

X 0.235 -0.398

Xu 0.235 0.048

X 0.235 0.014

X3 0.235 0.470

Xy 0235 0.170

X5 0.235 0.069

Xig 0.235 -0.069

Xy 0.235 0.031

X1 0.235 -0.041

Quasi-Eigenvalues 223.0 486
Cumulative % 46% 10%
0:‘ %3
2 1Y 0.4
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(1) Row Plot
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(2) Column Plot

Figure 3. Partial Quantification Plots
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6. Concluding Remarks

Principal component analysis, in fully exploratory use, is adopted to find out a number of
linear combinations that deliver maximal information contained in the data set. But, in the
fields of social science, the first principal component may come logically from the established
knowledge and natural premises. For example, the simple average of given variables may be
designated as the first principal component.

The variance explained by the first principal axis of conventional principal component
analysis is always larger than that of the partial quantification PCA. Thus, there is less
danger of over-interpretation by partial quantification in PCA.

Although the partial quantification method of Section 2 is formulated from the geometry in
the row space R, we can construct similarly another partial quantification method in the
column space R". Details can be found in the first author’s doctoral thesis (Suh, 1997).

This study derives remaining principal components in the data, given the first principal
component. It is obvious that the algorithm of Section 2, if modified slightly, will work out
smoothly for the situation that the first two principal components are specified a priori.
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