• Title/Summary/Keyword: A new host

Search Result 926, Processing Time 0.034 seconds

Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection

  • Eun-Jin Park;Prashanta Silwal;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.40.1-40.20
    • /
    • 2021
  • Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.

'Nobody helps the family.' South Korean Cultural Identity in Bong Joon-ho's The Host (2006)

  • McSweeney, Terence
    • Cross-Cultural Studies
    • /
    • v.20
    • /
    • pp.275-294
    • /
    • 2010
  • This article examines Bong Joon-ho's science fiction/horror film, The Host (2006) and interrogates its depiction of a contemporary South Korean family in crisis. The writer considers the film as a resonant cultural artefact and a manifestation of particularly new-millennial anxieties concerned with the continued involvement of the United States in South Korean affairs, fears of an erosion of traditional family values and mistrust of officious, state endorsed bureaucracy. The Host emerges as a profoundly visceral depiction of an ordinary family set against everyone with no one to turn to except each other.

New phosphorescent host material: Tetrameric Zinc(II) Cluster

  • Lee, Hyung-Sup;Jeon, Ae-Kyong;Lee, Kyu- Wang;Lee, Sung-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.903-906
    • /
    • 2003
  • Doping a small amount of a phosphorescent dye into an organic light-emitting diodes(OLED) can lead to a significant improvement in the device properties. The fluorescent host materials like TAZ, CBP have been used, but have a problem of rapid decay of efficiency at high current densities. To alleviate this problem, phosphorescent host was introduced. The whole configuration of OELD fabricated was ITO/a-NPD(50nm)/Zn $cluster:Ir(ppy)_{3}(30nm)/BCP{(10nm)/Alq_{3}(20nm)$ /Al:Li. The OLED showed high luminance (> 50,000 $cd/m^{2}$ ) and external efficiency(5.7%). At higher current densities, rapid decay of external quantum efficiency or host emission, which was frequently observed in the fluorescent host system, were not observed.

  • PDF

A Novel Method of Fast Attachment for Non-DNAv6 Hosts in the DNAv6 Network (DNAv6 망에서 Non-DNAv6 호스트의 빠른 Attachment 방안)

  • Sim, Sang-Bum;Min, Sang-Won;Kim, Bok-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8B
    • /
    • pp.1115-1121
    • /
    • 2010
  • The DNAv6 was designed to support fast attachment for a host, which is corresponding to the movement detection part in the mobility management. Since, however, the DNAv6 has supported only DNAv6-capable ARs and DNAv6-capable hosts, an non-DNAv6 host could not support fast handoff function in a DNAv6 network. In this paper, we consider a new method of the fast attachment of non-DNAv6 hosts. To support the non-DNAv6 host in DNAv6 networks, we suggest a novel algorithm, RCA algorithm, where an AR can decide whether a host has the DNAv6 function and whether it has moved to a new link or not, and then the AR can inform the host of new link information. For the RCA algorithm, we proposed to modify the RS message and the Reconf_Link message with addition of some fields. To validate our RCA algorithm and its performance, we have accomplished simulation tests for the ND process, the DNAv6 process and the modified DNAv6 process with our RCA algorithm. In the viewpoints of the attachment delay and complexity, the proposed algorithm gives the better delay performance than the ND process while it presents the less complexity than the DNAv6 process.

Development of the Leaf-Footed Bug Molipteryx fuliginosa (Hemiptera: Coreidae) (큰허리노린재(노린재목: 허리노린재과)의 발육)

  • Park, Sang Ock
    • The Korean Journal of Ecology
    • /
    • v.19 no.6
    • /
    • pp.575-582
    • /
    • 1996
  • Molipteryx fuliginosa (Uhler, 1860) is a plant juice sucker which feeds on new tips of Rubus oldhami Miquel and Zelkowa serrata Makino, and it has a strong preference for teses two plants in Korea. M. fuliginosa has one generation a year and hibernates as a young adult. Most of the winter survivors emerge in early May. It is the first time their host plants were found and reported. Females mainly lay their eggs one by one separately on the leaves of R. oldhami, and even on the steel wire, the lid guaze and the ground in the laboratory. Nymphs do not gather, but stay on the hatching site, Nymphs except the non-feeding first instar feed on young shoots. From the second to the fifth instar nymphs migrate to the upper part of the shoot and congregate in part on an expanded leaf. The new adults first appeared on 11 August, and remained in the host plant, and fed on until mid October. The duration of the hatching and molting, and the survivorship curve based on the laboratory rearing were determined.

  • PDF

New Fluorescent Blue OLED Host and Dopant Materials Based on the Spirobenzofluorene

  • Lee, In-Ho;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1475-1482
    • /
    • 2011
  • New spiro[benzo[c]fluorene-7,9'-fluorene] (SBFF)-based blue host materials, 9-phenyl-SBFF (BH-4P) and 5,9-diphenyl-SBFF (BH-6DP), were successfully prepared by spiro-formation of 9-phenyl-7H-benzo[c]fluoren-7-one with 2-bromobiphenyl via lithiation and reaction of 5,9-dibromo-SBFF with phenylboronic acid through the Suzuki reaction, respectively. Diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]-amine (BD-1) and N,N-diphenyl-N',N'-diphenyl-SBFF-5,9-diamine (BD-6DPA) were used as dopant materials. Blue OLEDs with the configuration ITO/N,N'-bis-[4-(di-m-tolylamino)phenyl]-N,N'-diphenylbiphenyl-4,4'-diamine (DNTPD)/bis[N-(1-naphthyl)-N-phenyl]benzidine (NPB)/host:5% dopant/SFC-137/Al-LiF were prepared from the two host materials doped with BD-1 and BD-6DPA dopants and the devices composed of BH-4P and BH-6DP doped with BD-6DPA showed blue EL spectra at 458 and 463 nm at 7 V and luminance efficiencies of 4.58 and 4.88 cd/A, respectively.

The Role of Nitric Oxide in Mycobacterial Infections

  • Yang, Chul-Su;Yuk, Jae-Min;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • v.9 no.2
    • /
    • pp.46-52
    • /
    • 2009
  • Although tuberculosis poses a significant health threat to the global population, it is a challenge to develop new and effective therapeutic strategies. Nitric oxide (NO) and inducible NO synthase (iNOS) are important in innate immune responses to various intracellular bacterial infections, including mycobacterial infections. It is generally recognized that reactive nitrogen intermediates play an effective role in host defense mechanisms against tuberculosis. In a murine model of tuberculosis, NO plays a crucial role in antimycobacterial activity; however, it is controversial whether NO is critically involved in host defense against Mycobacterium tuberculosis in humans. Here, we review the roles of NO in host defense against murine and human tuberculosis. We also discuss the specific roles of NO in the central nervous system and lung epithelial cells during mycobacterial infection. A greater understanding of these defense mechanisms in human tuberculosis will aid in the development of new strategies for the treatment of disease.

Host-Pathogen Dialogues in Autophagy, Apoptosis, and Necrosis during Mycobacterial Infection

  • Jin Kyung Kim;Prashanta Silwal;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.37.1-37.15
    • /
    • 2020
  • Mycobacterium tuberculosis (Mtb) is an etiologic pathogen of human tuberculosis (TB), a serious infectious disease with high morbidity and mortality. In addition, the threat of drug resistance in anti-TB therapy is of global concern. Despite this, it remains urgent to research for understanding the molecular nature of dynamic interactions between host and pathogens during TB infection. While Mtb evasion from phagolysosomal acidification is a well-known virulence mechanism, the molecular events to promote intracellular parasitism remains elusive. To combat intracellular Mtb infection, several defensive processes, including autophagy and apoptosis, are activated. In addition, Mtb-ingested phagocytes trigger inflammation, and undergo necrotic cell death, potentially harmful responses in case of uncontrolled pathological condition. In this review, we focus on Mtb evasion from phagosomal acidification, and Mtb interaction with host autophagy, apoptosis, and necrosis. Elucidation of the molecular dialogue will shed light on Mtb pathogenesis, host defense, and development of new paradigms of therapeutics.

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1184-1192
    • /
    • 2019
  • The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.

Immunogenomics approaches to study host innate immunity against intestinal parasites

  • Lillehoj, Hyun S.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.7-16
    • /
    • 2006
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease - causing pathogens represent major challenges to the poultry industry. More than 95 % of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper - virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

  • PDF