• Title/Summary/Keyword: A heavy rainfall

Search Result 736, Processing Time 0.044 seconds

A Case Study of Heavy Rainfall by A Developed Convective System over Gangneung on 6 August 2018 (2018년 8월 6일 발달한 대류계에 의해 발생한 강릉지역의 집중호우 사례 연구)

  • Park, Sung-Kyu;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.125-139
    • /
    • 2020
  • On 6 August 2018, heavy rainfall of daily precipitation of more than 200 mm occurred in the Yeong-dong coastal area, and especially, 1-hour precipitation of 93 mm (0251~0351 LST (local standard time) 6 August) at Gangneung station, ranked second in the history of meteorological survey of the station. In this study, this heavy rainfall case over the Gangneung area would be studied to investigate the process in which the heavy rainfall occurred. A developed ridge moved toward the Yeong-dong coastal area from the Maritime Province in Russia. The approaching of the ridge led to the northeasterly cold wind over the coastal region, causing the collision between the incoming northeasterly cold wind, and the humid and warm (convectively unstable) air located over the Yeong-dong area. This collision led to a strong convergence (maximum -206 × 10-5 s-1) at 925 hPa level over the vicinity of Gangneung at 0300 LST 6 August, resulting updraft of up to about 4.4 m s-1 at 700 hPa level over the area. This strong updraft forced to lift rapidly the convectively unstable, warm and humid air layer, located over the vicinity of Gangneung, leading to the heavy rainfall (1-hour precipitation of 93 mm) over the area.

Anthropogenic Fingerprint on Recent Changes in Typhoon Heavy Rainfall beyond Tipping-Point (최근 태풍 호우에서 보이는 인류세 지문의 변화: 임계점을 넘어서)

  • Hyungjun Kim;Nobuyuki Utsumi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.87-87
    • /
    • 2023
  • The impact of climate change on typhoons is a major concern in East Asia, especially due to the destructive effects of heavy rainfall on society and the economy, as many megacities are located along coastal regions. Although observations suggest significant changes in typhoon heavy rainfall, the extent to which anthropogenic forcing contributes to these changes has yet to be determined. In this study, we demonstrate that anthropogenic global warming has a substantial impact on the observed changes in typhoon heavy rainfall in the western North Pacific region. Observation data indicates that, in general, typhoon heavy rainfall has increased (decreased) in coastal East Asia (tropical western North Pacific) during the latter half of the 20th century and beyond. This spatial distribution is similar to the "anthropogenic fingerprint" observed from a set of large ensemble climate simulations, which represents the difference between Earth systems with and without human-induced greenhouse gas emissions. This provides evidence to support the claim that the significant increase in the frequency of typhoon heavy rainfall along coastal East Asia cannot be solely explained by natural variability. In addition, our results indicate that the signal of the "anthropogenic fingerprint" has been increasing rapidly since the mid-1970s and departed from natural variability in the early 2000s, indicating that the regional summer climate has already crossed the tipping point.

  • PDF

A Study on the Algorithm for Estimating Rainfall According to the Rainfall Type Using Geostationary Meteorological Satellite Data (정지궤도 기상위성 자료를 활용한 강우유형별 강우량 추정연구)

  • Lee Eun-Joo;Suh Myoung-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.117-120
    • /
    • 2006
  • Heavy rainfall events are occurred exceedingly various forms by a complex interaction between synoptic, dynamic and atmospheric stability. As the results, quantitative precipitation forecast is extraordinary difficult because it happens locally in a short time and has a strong spatial and temporal variations. GOES-9 imagery data provides continuous observations of the clouds in time and space at the right resolution. In this study, an power-law type algorithm(KAE: Korea auto estimator) for estimating rainfall based on the rainfall type was developed using geostationary meteorological satellite data. GOES-9 imagery and automatic weather station(AWS) measurements data were used for the classification of rainfall types and the development of estimation algorithm. Subjective and objective classification of rainfall types using GOES-9 imagery data and AWS measurements data showed that most of heavy rainfalls are occurred by the convective and mired type. Statistical analysis between AWS rainfall and GOES-IR data according to the rainfall types showed that estimation of rainfall amount using satellite data could be possible only for the convective and mixed type rainfall. The quality of KAE in estimating the rainfall amount and rainfall area is similar or slightly superior to the National Environmental Satellite Data and Information Service's auto-estimator(NESDIS AE), especially for the multi cell convective and mixed type heavy rainfalls. Also the high estimated level is denoted on the mature stage as well as decaying stages of rainfall system.

  • PDF

Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall (적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향)

  • Lee, Jae-Bok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.

A Study on Effects of Rainfall on Contamination at Stream Around the Developed Quarry (강우가 석산개발 지역 주변 하천의 오염에 미치는 영향에 관한 연구)

  • Lee, Yang-Kyu;Han, Jung-Geun;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This paper describes the influence of rainfall on contamination at stream around the developed quarry. The investigation results are analyzed to evaluate the relationship rainfall and heavy metals (or water pollution). In the relationship rainfall and heavy metals, the result showed that the heavy metal contaminations are caused by boulder stone, waste residue and stone sludge, which is reacted with the direct contamination source, in the burried layer. It also found that the water flow change of stream according to the rainfall increase affected the large effect to a contamination level of heavy metal. the water pollution was increased by time changed from the rainy season to the dry season. That is, a lot of suspended solids had been discharge from the developed quarry due to rainfall increase, and then pollution level of water increases as the undercurrent of suspended solids is generated in stream due to rainfall decrease. Therefore, it analyzed that continuous causes of heavy metal contamination and water pollution in stream are materials in the burried layer and a discharge of pollution source from the developed quarry due to rainfall.

The Characteristics of Heavy Rainfall over the Korean Peninsular - Case Studies of Heavy Rainfall Events during the On- and Off- Changma Season- (장마기와 장마 후의 한반도 집중호우 특성 사례분석)

  • Chung, Hyo-Sang;Chung, Yun-Ang;Kim, Chang-Mo;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1511-1521
    • /
    • 2012
  • An attempt is made to analyse characteristic features of heavy rainfalls which occur at the metropolitan area of the Korean peninsular the on- and off- Changma season. For this, two representative heavy rainfall episodes are selected; one is the on-Changma season wherein a torrential rain episode happened at Goyang city on 12 July 2006, and the other is the off-Changma season, a heavy rainfall event in Seoul on 21 September 2006. Both recorded considerable amounts of precipitation, over 250mm in a half-day, which greatly exceeded the amount expected by numerical prediction models at those times, and caused great damage to property and life in the affected area. Similarities in the characteristics of both episodes were shown by; the location of upper-level jet streak and divergence fields of the upper wind over heavy rainfall areas, significantly high equivalent potential temperatures in the low atmospheric layer due to the entrainment of hot and humid air by the low-level jet, and the existence of very dry air and cold air pool in the middle layer of the atmosphere at the peak time of the rainfall events. Among them, differences in dynamic features of the low-level jet and the position of rainfall area along the low-level jet are remarkable.

Analysis on disasters pattern of the railroad caused by heavy rainfall ($2002{\sim}2007$) (집중호우로 인한 철도재해 유형 분석($2002{\sim}2007$년도))

  • Choi, Chan-Yong;Lee, Jin-Wook;Shin, Min-Ho;Lee, Suk-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.88-92
    • /
    • 2008
  • For more and more citizen safety and national security due to an unusual weather change and massive disaster, the atmospheric is one of the most major factors. According the Weather Service data that the rainfall intensity has been on the rise due to heavy rainfall in korea, and then daily precipitation expects to decline relative it. The characteristic climate of the domestic has a heavy rainfall due to 65% of mountain area in country and a regional declination as like seasonal effect, yearly. etc. In this paper, it was analyzed a disaster pattern and restoration cost based on occurred heavy rainfall from 2002 to 2007.

  • PDF

Predictability for Heavy Rainfall over the Korean Peninsula during the Summer using TIGGE Model (TIGGE 모델을 이용한 한반도 여름철 집중호우 예측 활용에 관한 연구)

  • Hwang, Yoon-Jeong;Kim, Yeon-Hee;Chung, Kwan-Young;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.287-298
    • /
    • 2012
  • The predictability of heavy precipitation over the Korean Peninsula is studied using THORPEX Interactive Grand Global Ensemble (TIGGE) data. The performance of the six ensemble models is compared through the inconsistency (or jumpiness) and Root Mean Square Error (RMSE) for MSLP, T850 and H500. Grand Ensemble (GE) of the three best ensemble models (ECMWF, UKMO and CMA) with equal weight and without bias correction is consisted. The jumpiness calculated in this study indicates that the GE is more consistent than each single ensemble model. Brier Score (BS) of precipitation also shows that the GE outperforms. The GE is used for a case study of a heavy rainfall event in Korean Peninsula on 9 July 2009. The probability forecast of precipitation using 90 members of the GE and the percentage of 90 members exceeding 90 percentile in climatological Probability Density Function (PDF) of observed precipitation are calculated. As the GE is excellent in possibility of potential detection of heavy rainfall, GE is more skillful than the single ensemble model and can lead to a heavy rainfall warning in medium-range. If the performance of each single ensemble model is also improved, GE can provide better performance.

Rainfall Trend Detection Using Non Parametric Test in the Yom River Basin, Thailand

  • Mama, Ruetaitip;Bidorn, Butsawan;Namsai, Matharit;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.424-424
    • /
    • 2017
  • Several studies of the world have analyzed the regional rainfall trends in large data sets. However, it reported that the long-term behavior of rainfall was different on spatial and temporal scales. The objective of this study is to determine the local trends of rainfall indices in the Yom River Basin, Thailand. The rainfall indices consist of the annual total precipitation (PRCTPOP), number of heavy rainfall days ($R_{10}$), number of very heavy rainfall days ($R_{20}$), consecutive of dry days (CDD), consecutive of wet days (CWD), daily maximum rainfall ($R_{x1}$), five-days maximum rainfall ($R_{x5}$), and total of annual rainy day ($R_{annual}$). The rainfall data from twelve hydrological stations during the period 1965-2015 were used to analysis rainfall trend. The Mann-Kendall test, which is non-parametric test was adopted to detect trend at 95 percent confident level. The results of these data were found that there is only one station an increasing significantly trend in PRCTPOP index. CWD, which the index is expresses longest annual wet days, was exhibited significant negative trend in three locations. Meanwhile, the significant positive trend of CDD that represents longest annual dry spell was exhibited four locations. Three out of thirteen stations had significant decreasing trend in $R_{annual}$ index. In contrast, there is a station statistically significant increasing trend. The analysis of $R_{x1}$ was showed a station significant decreasing trend at located in the middle of basin, while the $R_{x5}$ of the most locations an insignificant decreasing trend. The heavy rainfall index indicated significant decreasing trend in two rainfall stations, whereas was not notice the increase or decrease trends in very heavy rainfall index. The results of this study suggest that the trend signal in the Yom River Basin in the half twentieth century showed the decreasing tendency in both of intensity and frequency of rainfall.

  • PDF

A Study on Characteristics of Rainfall Triggering Landslides and Geometry of Slopes in Chuncheon during 2006 (2006년 춘천지역 산사태 유발 강우와 사면의 기하 특성에 관한 연구)

  • Yoo, Nam-Jae;Lee, Yong-Won;Kim, Ho-Jin
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.33-40
    • /
    • 2010
  • This paper is results of analyzing the characteristics of rainfall triggering landslides and geometry of slopes, caused by the heavy rainfall and antecedent precipitation by Typhoons Ewiniar and Bilis at Chuncheon area in Gangwondo around July in 2006. As results of analyzing the characteristics of rainfall, landslides in 131 sites were found to happen due to the heavy rainfall having the maximum intensity of rainfall in an hour during July 15 and antecedent precipitation during July 12 to 14 causing the ground to be weak by increasing the degree of saturation previously. From results of analyzing the geometrical characteristics of 131 slopes where landslides occurred, the slope width were in the range of 6~10m. The average slope length and angle were 46m and $51.8^{\circ}$, which was relatively steep slope, respectively. Landlises occurred in the elevation of 400 - 500 m with the most probable frequency.

  • PDF