• Title/Summary/Keyword: A growth inhibiting compound

Search Result 46, Processing Time 0.026 seconds

Separation and Identification of a Growth Inhibiting Compound from Aralia continentalis (독활(Aralia continentalis)로부터 생장억제물질(生長抑制物質)의 분리(分離) 및 동정(同定))

  • Kim, K.U.;Back, K.W.
    • Korean Journal of Weed Science
    • /
    • v.10 no.3
    • /
    • pp.221-226
    • /
    • 1990
  • This experiment was performed to identify and isolate a growth inhibiting compound from Aralia continentalis. In order to isolate the growth inhibiting compound from Aralia continentalis the bioassay test of lettuce seed germination and rice seedling growth were used. Through these bioassays the growth inhibiting compound which was spotted at $R_f$ 0.51 on Tlc was isolated. This compound inhibited the lettuce growth by 79% at the concentration of 1000ppm. When sprayed with $FeCl_3$ reagent, it developed a bule spot. It had UV-absorbance at 217 nm and 342 nm, and $OH^-$ of $3600cm^{-1}$, C=O of $1700cm^{-1}$, C=C of $1600cm^{-1}$, and C-O of $1200cm^{-1}$ on IR spectrum. Through HPLC analysis this compound was identified as a ferulic acid ($C_{10}H_{10}O_4$) having 25 min. retention time.

  • PDF

Resveratrol Anglog 3,5,2',4'-Tetramethoxy-trans-stilbene, Potentiates the Inhibotion of Cell Growth and Induces Apoptosis in Human Cancer Cells

  • Nam, Kyung-Ae;Kim, Sang-hee;Heo, Yeon-Hoi;Lee, Sang-Kook
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.441-445
    • /
    • 2001
  • Resveratrol, a trihydroxystilbene found in grapes and several plants, has been shown to be active in inhibiting multistage carcinogenic process. Using resveratrol as the prototype, we synthesized several analogs and evaluated their growth inhibitory effect using cultured human cancer cells. In the present report we show that one of the resveratrol analogs, 3, 5,2',4'-tetramethoxy-trans-stilbene, potentiated the inhibition of cancer cell growth. Prompted by the strong growth Inhibitory activity of the compound ($IC_{50}$; $0.8{\mu}$ g/ml) compared to resveratrol ($IC_{50}$; $18{\mu}$ug/ml) in cultured human colon cancer cells (Col2), we performed an action mechanism study using the compound. The compound induced the accumulation of cellular DNA contents in the sub-CO phase DNA contents of the cell cycle by in a time-dependent manner. The morphological changes were also consistent with an apoptotic process. This result indicated that the compound induced apoptosis of cancer cells, and may be a candidate for use in the development of potential cancer chemotherapeutic or cancer chemopreventive agents.

  • PDF

Isolation of a petunia cell growth inhibitor from Streptomyces sp. 9602 (Streptomyces sp. 9602 균주로부터 페튜니아 캘러스 생장억제물질의 분리)

  • 김명조;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.3
    • /
    • pp.149-152
    • /
    • 1997
  • To search for a compound inhibiting the petunia callus growth from Streptomyces sp., we investigated the activity in the culture broth of 400 strains. The active compound was successively purified with solvent fractionation, silica gel column chromatography from Streptomyces sp. 9602 strain, and identified as 2, 5, 7-trihydroxy-3-(5'-hydroxyhexyl)-1, 4-naphthoquinone by 1H-NMR, EI-MS, IR and UV. It inhibited the callus growth of petunia by 50% at $32\mu\textrm{g}$/mL.

  • PDF

Pharmacological Effects of Asaronaldehyde Isolated from Acorus gramineus Rhizome

  • Kim, Hyo-Gyung;Jeon, Ju-Hyun;Kim, Moo-Key;Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.685-688
    • /
    • 2005
  • Antibacterial and antiplatelet activities of Acorus gramineus rhizome-derived asaronaldehyde and asaron were analyzed using platelet aggregometer and six human intestinal bacteria. Active constituent of A. gramineus rhizome was isolated and characterized as asaronaldehyde by spectral analyses. At 2 and 1 mg/disk, asaronaldehyde exhibited strong inhibition of Clostridium perfringens and C. difficile without adverse effects on growth of beneficial bacteria such as Bifidobacterium bifidum, Lactobacillus acidophilus, and L. casei. Asaron also revealed moderate growth inhibition against C. perfringens and C. difficile at 2 mg/disk, no growth-inhibiting activity was observed on B. bifidum, L. acidophilus, L. casei, and E. coli. At 50% inhibitory concentration ($IC_{50}$) value, asaronaldehyde was effective in inhibiting platelet aggregation induced by collagen ($IC_{50}$, $27.6\;{\mu}M$) and arachidonic acid ($IC_{50}$, $53.7\;{\mu}M$). These results suggest asaronaldehyde may be useful as lead compound for inhibiting platelet aggregation induced by collagen and arachidonic acid.

Isolation of Bacteria Associated with the King Oyster Mushroom, Pleurotus eryngii

  • Lim, Yun-Jung;Ryu, Jae-San;Shi, Shanliang;Noh, Won;Kim, Eon-Mi;Le, Quy Yang;Lee, Hyun-Sook;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Eight distinct bacteria were isolated form diseased mycelia of the edible mushroom, Pleurotus eryngii. 16S rDNA sequence analysis showed that the isolates belonged to a variety of bacterial genera including Bacillus (LBS5), Enterobacter (LBS1), Sphingomonas (LBS8 and LBS10), Staphylococcus (LBS3, LBS4 and LBS9) and Moraxella (LBS6). Among them, 4 bacterial isolates including LBS1, LBS4, LBS5, and LBS9 evidenced growth inhibitory activity on the mushroom mycelia. The inhibitory activity on the growth of the mushroom fruiting bodies was evaluated by the treatment of the bacterial culture broth or the heat-treated cell-free supernatant of the broth. The treatment of the culture broths or the cell-free supernatants of LBS4 or LBS9 completely inhibited the formation of the fruiting body, thereby suggesting that the inhibitory agent is a heat-stable compound. In the case of LBS5, only the bacterial cell-containing culture broth was capable of inhibiting the formation of the fruiting body, whereas the cell-free supernatant did not, which suggests that an inhibitory agent generated by LBS5 is a protein or a heat-labile chemical compound, potentially a fungal cell wall-degrading enzyme. The culture broth of LBS1 was not inhibitory. However, its cell-free supernatant was capable of inhibiting the formation of fruiting bodies. This indicates that LBS1 may produce an inhibitory heat-stable chemical compound which is readily degraded by its own secreted enzyme.

New Safrole Oxide Derivatives: Synthesis and in vitro Antiproliferative Activities on A549 Human Lung Cancer Cells

  • Wang, Li-Ying;Wang, Xiu-Hua;Tan, Jia-Lian;Xia, Shuai;Sun, Heng-Zhi;Shi, Jin-Wen;Jiang, Ming-Dong;Fang, Liang;Zuo, Hua;Dupati, Gautam;Jang, Kiwan;Shin, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3571-3575
    • /
    • 2012
  • A number of novel small molecules, safrole oxide derivatives 4a-c, 6a-c, 9a-h, were synthesized by the reaction of safrole oxide with anilines 3 and 5, or its alkyl allyl ether derivative 7 with alkyl bromide 8 in moderate yields. The antiproliferative effects of all the target molecules on A549 cell growth were investigated and it was found that the 14 novel compounds could suppress A549 lung cancer cell growth. Among them, compound 6b was the most effective compound in inhibiting the proliferation of A549 cells.

Anti-carcinogenic effects of non-polar components containing licochalcone A in roasted licorice root

  • Park, So Young;Kim, Eun Ji;Choi, Hyun Ju;Seon, Mi Ra;Lim, Soon Sung;Kang, Young-Hee;Choi, Myung-Sook;Lee, Ki Won;Yoon Park, Jung Han
    • Nutrition Research and Practice
    • /
    • v.8 no.3
    • /
    • pp.257-266
    • /
    • 2014
  • BACKGROUND/OBJECTIVE: Licorice has been shown to possess cancer chemopreventive effects. However, glycyrrhizin, a major component in licorice, was found to interfere with steroid metabolism and cause edema and hypertension. The roasting process of licorice modifies the chemical composition and converts glycyrrhizin to glycyrrhetinic acid. The purpose of this study was to examine the anti-carcinogenic effects of the ethanol extract of roasted licorice (EERL) and to identify the active compound in EERL. MATERIALS/METHODS: Ethanol and aqueous extracts of roasted and un-roasted licorice were prepared. The active fraction was separated from the methylene chloride (MC)-soluble fraction of EERL and the structure of the purified compound was determined by nuclear magnetic resonance spectroscopy. The anti-carcinogenic effects of licorice extracts and licochalcone A was evaluated using a MTT assay, Western blot, flow cytometry, and two-stage skin carcinogenesis model. RESULTS: EERL was determined to be more potent and efficacious than the ethanol extract of un-roasted licorice in inhibiting the growth of DU145 and MLL prostate cancer cells, as well as HT-29 colon cancer cells. The aqueous extracts of un-roasted and roasted licorice showed minimal effects on cell growth. EERL potently inhibited growth of MCF-7 and MDA-MB-231 breast, B16-F10 melanoma, and A375 and A2058 skin cancer cells, whereas EERL slightly stimulated the growth of normal IEC-6 intestinal epithelial cells and CCD118SK fibroblasts. The MC-soluble fraction was more efficacious than EERL in inhibiting DU145 cell growth. Licochalcone A was isolated from the MC fraction and identified as the active compound of EERL. Both EERL and licochalcone A induced apoptosis of DU145 cells. EERL potently inhibited chemically-induced skin papilloma formation in mice. CONCLUSIONS: Non-polar compounds in EERL exert potent anti-carcinogenic effects, and that roasted rather than un-roasted licorice should be favored as a cancer preventive agent, whether being used as an additive to food or medicine preparations.

Isolation and Identification of Antifungal Compounds from $Bacillus$ $subtilis$ C9 Inhibiting the Growth of Plant Pathogenic Fungi

  • Islam, Md. Rezuanul;Jeong, Yong-Tae;Lee, Yong-Se;Song, Chi-Hyun
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • Antagonistic microorganisms against $Rhizoctonia$ $solani$ were isolated and their antifungal activities were investigated. Two hundred sixteen bacterial isolates were isolated from various soil samples and 19 isolates were found to antagonize the selected plant pathogenic fungi with varying degrees. Among them, isolate C9 was selected as an antagonistic microorganism with potential for use in further studies. Treatment with the selected isolate C9 resulted in significantly reduced incidence of stem-segment colonization by $R.$ $solani$ AG2-2(IV) in Zoysia grass and enhanced growth of grass. Through its biochemical, physiological, and 16S rDNA characteristics, the selected bacterium was identified as $Bacillus$ $subtilis$ subsp. $subtilis$. Mannitol (1%) and soytone (1%) were found to be the best carbon and nitrogen sources, respectively, for use in antibiotic production. An antibiotic compound, designated as DG4, was separated and purified from ethyl acetate extract of the culture broth of isolate C9. On the basis of spectral data, including proton nuclear magneric resonance ($^1H$ NMR), carbon nuclear magneric resonance ($^{13}C$ NMR), and mass analyses, its chemical structure was established as a stereoisomer of acetylbutanediol. Application of the ethyl acetate extract of isolate C9 to several plant pathogens resulted in dose-dependent inhibition. Treatment with the purified compound (an isomer of acetylbuanediol) resulted in significantly inhibited growth of tested pathogens. The cell free culture supernatant of isolate C9 showed a chitinase effect on chitin medium. Results from the present study demonstrated the significant potential of the purified compound from isolate C9 for use as a biocontrol agent as well as a plant growth promoter with the ability to trigger induced systemic resistance of plants.

Antimicrobial Activity of Extracts from Citrus Seeds (감귤류 종자 추출물의 향균활성)

  • 오혁수;박욱병;안용석;오명철;오창경;김수현
    • Culinary science and hospitality research
    • /
    • v.9 no.4
    • /
    • pp.69-80
    • /
    • 2003
  • To develope natural food preservatives antimicrobial effect of the natural products against food-related bacteria and yeast The purpose of this study was evaluate antimicrobial effect of the citrus seeds. antimicrobial activities of methanol extracts from the citrus seeds investigate against Escherichia coli O26, Staphylococcus aureus 6358, Saccharomyces cerevisiae IBM 4274, Bacillus licheuiformis 9945a and Alcoligenes faecalis. Citrus seeds is containing to moisture 4∼6.5%, curd protein 11∼15%, curd lipid 32∼46%, curd carbohydrate 22∼45 % and ash 2∼4 %, that is containing to flavornoid 12∼48mg% and phenolic compound 22∼53mg%. Solidity content of the methanol extract from the citrus seeds was 0.8∼1.2%. Almost all of the methanol extracts from citrus seeds exhibited growth inhibiting activities for most of microorganisms tested. The methanol extracts from Citrus grandis, C. sunki, C. sulcata showed the growth inhibitory effects against Escherichia coli O26. The methanol extracts from C. obovoidea, C. sulcata, C. aurantium showed the growth inhibitory effects against Staphylococcus aureus 6358. The methanol extracts from C. obovoidea, C. sulcata, C. tangerina showed the growth inhibitory effects against Saccharomyces cerevisiae IBM 4274. The methanol extracts from C. obovoidea, C sunki, C. sulcata, C. tangerinan, C. natsudaidai, C. iyo, C. aurantium showed the growth inhibitory effects against Bacillus licheuiformis 9945a. The methanol extracts from C. obovoidea, C sunki, C. sulcata, C. aurantium showed the growth inhibitory effects against Alcoligenes faecalis. Among this especially, Showed growth inhibiting activity of the methanol extracts from Citrus sulcata that about microorganisms investigated. If apply searching suitable application method about such the citrus seeds antimicrobial activity, role as good antimicorbial material in storage or cooking of food, processing is expected.

  • PDF

Analysis of Growth and Antioxidant Compounds in Deodeok in Response to Mulching Materials (피복물 종류에 따른 더덕의 생육 및 항산화 물질 비교)

  • Yoon, Kyeong Kyu;Moon, Kyong Gon;Kim, Sang Un;Um, In Seok;Cho, Young Son;Kim, Young Guk;Rho, Il Rae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.183-190
    • /
    • 2016
  • Background: This study determined the effects of mulching, an environment friendly organic cultivation method, on antioxidant compound contents and growth in Codonopsis lanceolata, commonly known as Deodeok. Methods and Results: C. lanceolata was treated by mulching with several different methods (a non-woven fabric, biodegradable film, or rice husks) and also treated with hand weeding. A non-treatment plot was used as a control. The growth and levels of weed control in C. lanceolata were better in plants cultivated under mulching treatments (non-woven fabric, biodegradable film, and rice husks) than in those under non-mulching treatments (hand weeding and non-treatment). The contents of antioxidant compounds, such as total flavonoids, phenolics, and anthocyanins, were highest under the biodegradable film treatment, followed by the non-woven fabric treatment, rice husks treatment hand weeding, and non-treatment. There were identifiable differences in DPPH and ABTS activity in comparison to antioxidant compound content by solvent fractions. Mulching treatments resulted in higher DPPH scavenging activity in water and ethyl ether fractions and ABTS scavenging activity in n-butanol fractions than in other fractions, as opposed to hand weeding and non-treatment groups, although total activity of DPPH and ABTS did not increase with mulching treatments. Conclusions: Mulching C. lanceolata with biodegradable film and non-woven fabric is an effective method for improving plant growth and inhibiting the occurrence of weeds as well as for increasing antioxidant compound content and altering antioxidant activity.