• Title/Summary/Keyword: A dry concrete storage cask

Search Result 17, Processing Time 0.025 seconds

Seismic analysis of free-standing spent-fuel dry storage cask considering soil-concrete pad-cask interaction

  • Seungpil Kim;Sang Soon Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4446-4454
    • /
    • 2024
  • This paper presents a seismic analysis method that can evaluate a very large number of cases for the free standing dry storage cask by proposing a methodology that has short analysis time as well as accuracy. This study also performed a seismic analysis of a dry storage facility with multiple casks to show a tip-over phenomenon from earthquake accident conditions. The earthquake accident condition is long-term event that occur during about 20 s long, and lots of seismic analysis cases should be performed to consider various real conditions because the free-standing spent-fuel dry storage cask has many nonlinear responses. The soil-concrete pad-cask interaction was considered in the seismic analysis and finite element model was made using concrete pad, soil and cask models. In the reinforced concrete pad, the rebar was excluded to reduce the analysis time, but the thickness was corrected to maintain the bending rigidity. Additionally, the analysis time reduced by modeling the cask as a rigid body rather than a flexible body. 35-cases of seismic analysis were performed to determine a tip-over phenomenon from each earthquake. The analysis revealed that no tip-over phenomenon of the cask was observed in all analyses from 0.2 g to 0.6 g, however the tip-over of the cask were observed from 0.8 g with friction coefficients of 0.8 and 1.0.

Status Analysis for the Confinement Monitoring Technology of PWR Spent Nuclear Fuel Dry Storage System (경수로 사용후핵연료 건식저장시스템의 격납감시 기술현황 분석)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • Leading national R&D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

Preliminary Shielding Analysis of the Concrete Cask for Spent Nuclear Fuel Under Dry Storage Conditions (건식저장조건의 사용후핵연료 콘크리트 저장용기 예비 방사선 차폐 평가)

  • Kim, Tae-Man;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • The Korea Radioactive Waste Agency (KORAD) has developed a concrete cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. During long-term storage of spent nuclear fuel in concrete casks kept in dry conditions, the integrity of the concrete cask and spent nuclear fuel must be maintained. In addition, the radiation dose rate must not exceed the storage facility's design standards. A suitable shielding design for radiation protection must be in place for the dry storage facilities of spent nuclear fuel under normal and accident conditions. Evaluation results show that the appropriate distance to the annual dose rate of 0.25 mSv for ordinary citizens is approximately 230 m. For a $2{\times}10$ arrangement within storage facilities, rollover accidents are assumed to have occurred while transferring one additional storage cask, with the bottom of the cask facing the controlled area boundary. The dose rates of 12.81 and 1.28 mSv were calculated at 100 m and 230 m from the outermost cask in the $2{\times}10$ arrangement. Therefore, a spent nuclear fuel concrete cask and storage facilities maintain radiological safety if the distance to the appropriately assessed controlled area boundary is ensured. In the future, the results of this study will be useful for the design and operation of nuclear power plant on-site storage or intermediate storage facilities based on the spent fuel management strategy.

Evaluation of Neutron Flux Accounting for Shadowing Effect Among the Dry Storage Casks (경수로 사용후핵연료 건식저장용기 간 중성자 표면선속 간섭률 평가)

  • Min Woo Kwak;Shin Dong Lee;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • The Korean 2nd basic plan for management of high-level radioactive waste presented a plan to manage spent nuclear fuel through dry storage facilities in NPP on-site. For the construction and operation of the facility, it is necessary to develop the monitoring system of the integrity of spent nuclear fuel before operation. NUREG-1536 recommends that the theoretical cask array, typically in the 2×10 array, should account for shadowing effect among the dry storage casks. The objective of this study was to evaluate neutron flux accounting for shadowing effect among dry storage casks. The neutron release rate was evaluated using ORIGEN based on the design basis fuel condition. And the simulation of dry storage casks and evaluation of the shadowing effect were performed using MCNP. Shadowing effect of other dry storage casks was the highest at the center of the dry storage facility of the 2×10 array compared with the outside of the cask. The shadowing effect of neutron flux on the surface among the metal casks was approximately 18% at point 1, 23% at point 2, and 43% at point 3. For the concrete casks, the shadowing effect of neutron flux on the surface was approximately 46% at point 1, 51% at point 2, and 52% at point 3. This means that correction is necessary to monitor the integrity of spent nuclear fuel in each dry storage cask through evaluation of shadowing effect. The results of this study will be used for comparative analysis of neutron measurement data from spent nuclear fuels in dry storage cask. Additionally, the neutron flux evaluation procedure used in this study could be used as the basic data of safety assessment of dry storage cask and development of safety guide.

REVIEW AND FUTURE ISSUES ON SPENT NUCLEAR FUEL STORAGE

  • Saegusa, T.;Shirai, K.;Arai, T.;Tani, J.;Takeda, H.;Wataru, M.;Sasahara, A.;Winston, P.L.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.237-248
    • /
    • 2010
  • The safety of metal cask and concrete cask storage technology has been verified by CRIEPI through several research programs on demonstrative testing for the interim storage of spent fuel. The results have been reflected in the safety requirements for dry casks issued by NISA/METI (Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry) of the Japanese government. On top of that, spent fuel integrity has been studied by the Japan Nuclear Energy Safety Organization (JNES). This paper reviews these research programs. Future issues include the long-term integrity of cask components and high burn-up spent fuel.

Seismic Response Tests of 1/8 Scale Model for a Spent Fuel Dry Storage Cask (사용후 연료 건식저장요기 1/8 규모 축소모형 지진응답시험)

  • Lee, J.H.;Koo, G.H.;Seo, G.S.;Lee, H.Y.;Choi, B.I.;Yeom, S.H.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.55-61
    • /
    • 2005
  • The seismic response tests of a spent fuel dry storage cask model of 1/8 scale are performed for an typical 1940 Elcentro earthquake. This paper focuses on the seismic response test data generation to check the overturing possibility of a storage cask and the slipping displacement on concrete slab bed. A simplified cask model is used to take into account the variations in seismic load magnitude and cask/bed interface friction. The test results show that the model gives an overturning response for an extreme condition.

  • PDF

Development Status for Commercialization of Spent Nuclear Fuel Transportation and Dry Storage System Technology (사용후핵연료 수송/저장시스템 상용화 기술개발 경과)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.271-279
    • /
    • 2018
  • During the seven years from 2009 to 2016, PWR SNF (spent nuclear fuel) transportation and storage systems suitable for domestic conditions were developed by the government to cope with the saturation of wet storage capacity in NPPs. One of the developed systems is a multipurpose metal cask applicable for transportation/storage; the other is a concrete cask dedicated to storage. Efficient cask technologies were secured utilizing the characteristics and experience of relevant industrial, academic and research institutes. Technological independence was also achieved through several patent registrations of research outcomes. To prepare for a rapid increase of demand in the near future, technology transfer of secured patents and technologies to the domestic industry was carried out twice in the years of 2016 and 2017.

Thermal Analysis of a Spent Fuel Storage Cask under Normal and Off-Normal Conditions (사용후핵연료 저장용기의 정상 및 비정상조건에 대한 열해석)

  • Ju-Chan Lee;Kyung-Sik Bang;Ki-Seog Seo;Ho-Dong Kim;Byung-Il Choi;Heung-Young Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.13-22
    • /
    • 2004
  • This study presents the thermal analyses of a spent fuel dry storage cask under normal and off-normal conditions. The environmental temperature is assumed to be 15 $^{\circ}C$ under the normal condition. The off-normal condition has an environmental temperature of 38 $^{\circ}C$. An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Two of the four air inlet ducts are assumed to be completely blocked. The significant thermal design feature of the storage cask is the air flow path used to remove the decay heat from the spent fuel. Natural circulation of the air inside the cask allows the concrete and fuel cladding temperatures to be maintained below the allowable values. The finite volume computational fluid dynamics code FLUENT was used for the thermal analysis. The maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal and off-normal conditions.

  • PDF

Design and Structural Safety Evaluation of the High Burn-up PWR Spent Nuclear Fuel for Storage Cask

  • Taehyung Na;Youngoh Lee;Yeji Kim;Donghee Lee;Taehyeon Kim;Kiyoung Kim;Yongdeog Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.201-210
    • /
    • 2024
  • Because most spent nuclear fuel storage casks have been designed for low burnup fuel, a safety-significant high burnup dry storage cask must be developed for nuclear facilities in Korea to store the increasing high burnup and damaged fuels. More than 20% of fuels generated by PWRs comprise high burnup fuels. This study conducted a structural safety evaluation of the preliminary designs for a high burnup storage cask with 21 spent nuclear fuels and evaluated feasible loading conditions under normal, off-normal, and accident conditions. Two types of metal and concrete storage casks were used in the evaluation. Structural integrity was assessed by comparing load combinations and stress intensity limits under each condition. Evaluation results showed that the storage cask had secured structural integrity as it satisfied the stress intensity limit under normal, off-normal, and accident conditions. These results can be used as baseline data for the detailed design of high burnup storage casks.

The Test for Verifying a Tip-Over Analysis of a Dry Storage Cask (건식저장용기에 대한 전복해석의 검증시험)

  • Kim Dong-Hak;Seo Ki-Seog;Lee Ju-Chan;Cho Chun-Hyung;Jang Hyun-Kee;Choi Byung-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.245-253
    • /
    • 2006
  • A test of the 1/3 scale model was conducted to verify the tip-over analysis of a dry. concrete storage cask under a hypothetical accident condition. The tip-over analysis was executed using the velocity at each point as the initial conditions of the model just before the impact. The initial velocity was determined from the initial angular velocity, which would make the equivalent kinetic energy to the potential energy. To confirm the structural integrity of the canister, the visual testing and the non-detective testings such as Liquid Penetrant testing and Ultrasonic Testing were conducted. The lid of a storage cask was plastically deformed near the impact point. The structural integrity of storage cask was maintained. To verify the tip-over analysis the strains and the accelerations acquired by the tip-over test were compared with those by the analyses. The results of the analysis were larger than the test results about two times.

  • PDF