• 제목/요약/키워드: A batch experiment

검색결과 371건 처리시간 0.03초

잘피 서식지 모니터링을 위한 딥러닝 기반의 드론 영상 의미론적 분할 (Semantic Segmentation of Drone Imagery Using Deep Learning for Seagrass Habitat Monitoring)

  • 전의익;김성학;김병섭;박경현;최옥인
    • 대한원격탐사학회지
    • /
    • 제36권2_1호
    • /
    • pp.199-215
    • /
    • 2020
  • 잘피는 연안해역에 서식하는 해양수생관속식물로 해양생태계의 중요한 역할을 하고 있어, 주기적인 잘피 서식지의 모니터링이 이루어지고 있다. 최근 효율적인 잘피 서식지의 모니터링을 위해 고해상도의 영상 획득이 가능한 드론의 활용도가 높아지고 있다. 그리고 의미론적 분할에 있어 합성곱 신경망 기반의 딥러닝이 뛰어난 성능을 보임에 따라, 원격탐사 분야에 이를 적용한 연구가 활발하게 이루어지고 있다. 그러나 다양한 딥러닝 모델, 영상, 그리고 하이퍼파라미터에 의해 의미론적 분할의 정확도가 다르게 나타나고, 영상의 정규화와 타일과 배치 크기에서도 정형화되어 있지 않은 상태이다. 이에 따라 본 연구에서는 우수한 성능을 보여주는 딥러닝 모델을 이용하여 드론의 광학 영상에서 잘피 서식지를 분할하였다. 그리고 학습 자료의 정규화 및 타일의 크기를 중점으로 결과를 비교 및 분석하였다. 먼저 정규화와 타일, 배치 크기에 따른 결과 비교를 위해 흑백 영상을 만들고 흑백 영상을 Z-score 정규화 및 Min-Max 정규화 방법으로 변환한 영상을 사용하였다. 그리고 타일 크기를 특정 간격으로 증가시키면서 배치 크기는 메모리 크기를 최대한 사용할 수 있도록 하였다. 그 결과, Z-score 정규화가 적용된 영상이 다른 영상보다 IoU가 0.26 ~ 0.4 정도 높게 나타났다. 또한, 타일과 배치 크기에 따라 최대 0.09까지 차이가 나타나는 것을 확인하였다. 딥러닝을 이용한 의미론적 분할에 있어 정규화, 타일의 배치 크기의 변화에 따른 결과가 다르게 나타났다. 그러므로 실험을 통해 이들 요소에 대한 적합한 결정 과정이 있어야 함을 알 수 있었다.

염기성 소화에 대한 활성탄의 영향 (Effects of Powdered Activated Carbon on Anaerobic Digestion)

  • 김승현
    • 한국농공학회지
    • /
    • 제32권3호
    • /
    • pp.102-115
    • /
    • 1990
  • Importance of anaerobic digestion as an energy generating device has been increased as fuel shortage becomes serieous. Several modification methods on the conventional digesters including Powdered Activated Carbon (PAC) addition and two-phase digestion were studied to enhance the gas production. This study investigated the effects of PAC on anaerobic digestion of chicken manure in terms of gas production and sludge stabilization. As a first experiment, an optimum PAC dose for efficient gas production was determined in a batch test. In semi-continuous experiments, an optimum Sludge Retention Time (SRT) at that PAC concentration and an overall substate utilization rate coefficient were investigated. A portion of gas increased by PAC addition was estimated using a substrate utilization rate coefficient of microorganisms attached on PAC. This test was performed in batch experiments using acetic acid as a substrate. The digesters for all experiments were kept 35${\pm}$ 1˚C in a heated water bath. Mixing was performed manually once a day and the produced gas was collected for daily reading. The following conclusions were made for this study. 1. Cptimum PAC concentration was 5% total solids, where gas production rate was increased by 20 percents. 2. Optimum SRT was 7.5 days. 3. Substrate utilization rate coefficient of microorganisms attached on PAC was about twice as much as that of suspended ones.

  • PDF

갯벌의 물리적 특성과 중금속 흡착에 관한 연구 (A Study on the Characteristics of Physical and the Adsorption of Heavy Metals)

  • 나영;이성백
    • 한국토양환경학회지
    • /
    • 제5권3호
    • /
    • pp.25-33
    • /
    • 2001
  • 새만금 간척으로 인해 변화된 조류흐름이 갯벌의 조성에 미치는 영향을 조사하였으며, 이에 따른 물리적 특성이 중금속의 오염도에 미치는 영향을 분석하였다. 또한 회분실험을 통하여 중금속의 종류와 농도 변화에 따른 흡착특성을 알아보고, 흡착등온식을 적용시켰다. 분석결과에 따르면, 해류의 흐름변화로 강 하구 부분에 퇴적현상이 일어나고 있었으며, 이 현상은 중금속의 함량에 영향을 미치고 있었다. 특히 입도 분포와 유기물 함량 그리고 양이온 치환능력의 영향이 크게 작용하고 있음을 알 수 있었다. 중금속 흡착능력은 30분 이내에 주입농도의 90%이상이 흡착되는 것으로 나타났다. 그러므로 새만금의 흐름 양상은 토양 입도를 변화시킬 것이며, 역시 중금속의 흡착능력의 변화가 일어날 것이다.

  • PDF

HRT 변경에 따른 호기성 그래뉼 슬러지의 오염원 제거효율에 미치는 영향 (Effects of Different Hydraulic Retention Times on Contaminant Removal Efficiency Using Aerobic Granular Sludge)

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제28권8호
    • /
    • pp.669-676
    • /
    • 2019
  • The purpose of this study was to evaluate the effects of different Hydraulic Retention Times (HRTs) on the contaminant removal efficiency using Aerobic Granular Sludge (AGS). A laboratory-scale experiment was performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen, orthophosphate removal efficiency, AGS/MLSS ratio, and precipitability in accordance with the HRT were evaluated. As a result, the COD removal efficiency was not significantly different with the reduction in HRT, and at a HRT of 6 h, the removal rate was slightly increased owing to the increase in organic loading rate. The nitrogen removal efficiency was improved by injection of influent division at a HRT of 6 h. As the HRT decreased, the MLSS and AGS tended to increase, and the sludge volume index finally decreased to 50 mL/g. In addition, the size of the AGS gradually increased to about 1.0 mm. Therefore, the control of HRT provides favorable conditions for the stable formation of AGS, and is expected to improve the contaminant removal efficiency with the selection of a proper operation strategy.

수산 지역의 규회석과 그 용해 거동 (Wollastonite from and Its Dissolution Behaviors)

  • 김수진;현성필;이성근
    • 한국광물학회지
    • /
    • 제9권1호
    • /
    • pp.1-6
    • /
    • 1996
  • Woolastonite from Susan occurs as intercalations in limestone beds of Lower Paleozoic Joseon Supergroup. It is a thermal metamorphic product of impure limestone. Electron microprobe analysis shows that it is considerably pure wollastonite. It has triclinic cell with a=7.932$\AA$, b=7.328$\AA$, c=7.069$\AA$, $\alpha$=89.995$^{\circ}$, $\beta$=$95.255^{\circ}$, and $ \Upsilon=103.367^{\circ}$.Dissolution behaviors of wollastonite have been studied conducting three different dissolution experiments; two different reactions with HC1 (one batch and one re-initialization experiment) and one traction with distilled water. In the batch type powder wollastonite-HCl reaction, pH of solution rapidly increases in the early stage and then its rate of increase slows down to reach plateau resulting in parabolic relationship with time. It is represented by the early rapid rise and fall in pH giving a sharp pH-edge and succeeding slow rise in the re-initialization experiment. The early rapid rise in pH is due to the rapid sorption of H- in solution to oxygens on the reactive surface of wollastonite and the fall in pH means that all reactive surface sites are occupied by H- ions and no more H- adsorption occurs. The slow rise in pH following the pH- edge is due to the dissolution of wollastonite as evidenced by the correlation of pH variation and cation concentration. Dissolution of powder wollastonite in HCl shows linear trend with time. Si is dissolved predominantly over Ca at a constant rate. Ca is dissolved predominantly in the very early stage. Dissolution rate of coarse-grained wollastonite fragments in distilled water is parabolic with times howing a rapid reaction in the early stage and a slow reaction in the advanced stage. The Ca/Si ratio in solution is high in the case of coarse-grained wollastonite fragment as compared with powder wollastonite. The coarse-grained wollastonite fragment-water (acid) reaction resulted in the solution with an elevated constant pH value (alkaline) giving an important significance on the environmental view point.

  • PDF

연속 회분식 고온 혐기성 공정의 운전특성 연구 (Operational Characteristics of the Anaerobic Sequencing Batch Reactor Process at a Thermophilic Temperature)

  • 이종훈;정태학;장덕
    • 상하수도학회지
    • /
    • 제11권1호
    • /
    • pp.33-41
    • /
    • 1997
  • An attempt was made to enhance anaerobic treatment efficiency by adopting the anaerobic sequencing batch reactor(ASBR) process at a thermophilic temperature. Operational characteristics of the ASBR process were studied using laboratory scale reactors and concentrated organic wastewater composed of soluble starch and essential nutrients. Effects of fill to react ratio (F/R) were examined in the Phase I experiment, where the equivalent hydraulic retention time(HRT) was maintained at 5 days with the influent COD of 10g/L. A continuous stirred tank reactor(CSTR) was operated in parallel as a reference. Treatment efficiency was higher for the ASBRs because of continuous accumulation of volatile suspended solids(VSS) compared to the CSTR. However, the rate of gas production and organic removal per unit VSS in the ASBRs was much lower than the CSTR. This was caused by reduced methane fermentation due to accumulation of volatile acids(VA), especially for the case of low F/R, during the fill period. When the F/R was high, maximum VA was low and the VA decreased in short period. Consequently, more stable operation was possible with higher F/R. Effects of hydraulic loading rate on the efficiency was studied in the Phase II experiment, where the organic loading rate was elevated to 3333mg/L-d with the F/R of 0.12. Reduction of organic removal along with rapid increase of VA was observed and the stability of reaction was seriously impaired, when the influent COD was doubled. However, operation of the ASBR was quite stable, when the hydraulic loading rate was doubled and a cycle time was adjusted to 12 hour. It is essential to avoid rapid accumulation of VA during the fill period in order to maintain operational stability of the ASBR.

  • PDF

Transport of Urea in Waterlogged Soil Column: Experimental Evidence and Modeling Approach Using WAVE Model

  • Yoo, Sun-Ho;Park, Jung-Geun;Lee, Sang-Mo;Han, Gwang-Hyun;Han, Kyung-Hwa
    • Journal of Applied Biological Chemistry
    • /
    • 제43권1호
    • /
    • pp.25-30
    • /
    • 2000
  • The main form of nitrogen fertilizer applied to lowland rice is urea, but little is known about its transport in waterlogged soil. This study was conducted to investigate the transport of urea in waterlogged soil column using WAVE (simulation of the substances Water and Agrochemicals in the soil, crop and Vadose Environment) model which includes the parameters for urea adsorption and hydrolysis, The adsorption distribution coefficient and hydrolysis rate of urea were measured by batch experiments. A transport experiment was carried out with the soil column which was pre-incubated for 45 days under flooded condition. The urea hydrolysis rate (k) was $0.073h^{-1}$. Only 5% of the applied urea remained in soil column at 4 days after urea application. The distribution coefficient ($K_d$) of urea calculated from adsorption isotherm was $0.21Lkg^{-1}$, so it was assumed that urea that urea was a weak-adsorbing material. The maximum concentration of urea was appeared at the convective water front because transport of mobile and weak-adsorbing chemicals, such as urea, is dependent on water convective flow. The urea moved down to 11 cm depth only for 2 days after application, so there is a possibility that unhydrolyzed urea could move out of the root zone and not be available for crops. A simulated urea concentration distribution in waterlogged soil column using WAVE model was slightly different from the measured concentration distribution. This difference resulted from the same hydrolysis rate applied to all soil depths and overestimated hydrodynamic dispersion coefficient. In spite of these limitations, the transport of urea in waterlogged soil column could be predict with WAVE model using urea hydrolysis rate (k) and distribution coefficient ($K_d$) which could be measured easily from a batch experiment.

  • PDF

산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(III) -유기물 제거에 관한 수학적 모델- (A Study on Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(III) -Mathematical model for organic removal-)

  • 안갑환;박상준;송승구
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.331-336
    • /
    • 1993
  • A mathematical model for organic removal efficiency was investigated in a fluidized bed biofilm reactor by changing the feed flow rate, the residence time and the recycle flow rate. In batch experiment, organic removal could be assumed as first order and an intrinsic first order rate constant(k1) was found $6.4{\times}^{-6}cm^3/mg{\cdot}sec$ at influent COD range of 3040 - 6620 mg/L. In continuous experiment, at the condition of the influent COD, 3040 mg/L, the superficial upflow velocity, 0.47 cm/sec, the biofilm thickness 336 ${\mu}m$ and the biofilm dry density 0.091 g/mL, the calculated COD removal efficiency from the mathematical model gave 60% which was very close to the observed value of 66 %. As the feed flow rate was increased, the COD removal efficiency was sharply decreased and at constant feed flow rate, the COD removal efficiency was decreased also as the residence time being decreased.

  • PDF

미생물제재를 이용한 혐기성소화조 바이오가스 생산 극대화와 실증화에 관한 연구 (Study on maximization and demonstration of biogas production in an anaerobic digester using a microbial agent)

  • 배상대
    • 문화기술의 융합
    • /
    • 제4권2호
    • /
    • pp.179-183
    • /
    • 2018
  • 요즘 음식물쓰레기를 혐기성소화조에서 바이오가스와 유기성 퇴비를 생산하고자 하는 연구가 늘어나고 있다. 본 연구에서는 음식물쓰레기를 미생물제재로 발효시켜 바이오가스와 퇴비를 생산하기 위한 기초실험을 행하였다. 먼저, 각종 미생물을 조합하여 미생물재제를 개발하고, 이를 음식물쓰레기 Batch실험에서 발생하는 바이오가스 발생량을 확인하였다. 또한 실증플랜트에서 바이오가스 발생량과 퇴비화를 통해 혐기성소화조 바이오가스 생산 극대화와 실증화를 확인하였다.

배치공정에서 왕겨가스화 특성 (Gasification Characteristics of Rice Husks in Batch Operation)

  • 김영중;강연구;유영선;강금춘;백이
    • Journal of Biosystems Engineering
    • /
    • 제33권4호
    • /
    • pp.248-252
    • /
    • 2008
  • An experiment was conducted in order to investigate gasification characteristics of rice husks in a fixed bed, which was a pre-step to design a continuous gasification system. Two air supply levels for gasification were chosen and their effects on the producer gas amount and producer gas composition were discussed. The main components of the producer gas were CO, $CO_2$, $O_2$, $H_2$ and THC (Total HydroCarbon). As airflow rate decreased, more producer gas was produced. The peak amount of CO, $H_2$ and THC were 28%, 7.5% and 0.68% in volume when constant airflow rate of $3.36\;m^3/s$ was used in the batch operation. About 4.5 kg of ash (9%) and condensed water including tars of 6 kg (11%) were produced from 50 kg rice husks in the gasification. Excluding the byproducts, all rice husks seemed to be transformed into producer gas. This gasification study was conducted prior to developing a continuous gasification system for biomass including agricultural byproducts.