• Title/Summary/Keyword: A Statistical Process Control System

Search Result 194, Processing Time 0.03 seconds

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.

Internal Control Risk Assessment System Using CRAS-CBR

  • Hwang, Sung-Sik;Taeksoo Shin;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.338-346
    • /
    • 2003
  • Information Technology (IT) and the internet have been major drivers the changes in all aspects of the business processes and activities. They have brought major changes to the financial statements audit environment as well, which in turn has required modifications in audit procedures. There exist, however, certain difficulties with current audit procedures especially for the assessment of the level of control risk. This assessment is primarily based on the auditors' professional judgment and experiences, not based on the objective hies or criteria. To overcome these difficulties, this paper proposes a prototype decision support model named CRAS-CBR using case based reasoning (CBR) to support auditors in making their professional judgment on the assessment of the level of control risk of the general accounting system in the manufacturing industry. To validate the performance, we compare our proposed model with benchmark performances in terms of classification accuracy for the level of control risk. Our experimental results showed CRAS-CBR outperforms a statistical model (MDA) and staff auditor performance in average hit ratio.

  • PDF

Evaluation of Demerit-CUSUM Control Chart Performance Using Fast Initial Response (FIR을 이용한 Demerit-CUSUM 관리도의 수행도 평가)

  • Kang, Hae-Woon;Kang, Chang-Wook;Baik, Jae-Won;Nam, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.94-101
    • /
    • 2009
  • Complex Products may present more than one type of defects and these defects are not always of equal severity. These defects are classified according to their seriousness and effect on product quality and performance. Demerit systems are very effective systems to monitoring the different types of defects. So, classical demerit control chart used to monitor counts of several different types of defects simultaneously in complex products. S.M. Na et al.(2003) proposed the Demerit-CUSUM for the improvement of the demerit control chart performance and Nembhard, D. A. et al.(2001) and G.Y Cho et al.(2004) developed a Demerit control chart using the EWMA technique and evaluated the performance of the control chart. In this paper, we present an effective method for process control using the Demerit-CUSUM with fast initial response. Moreover, we evaluate exact performance of the Demerit-CUSUM control chart with fast initial response, Demerit-CUSUM and Demerit-EWMA according to changing sample size or parameters.

-Performance Evaluation of $\bar{x}$ and EWMA Control Charts for Time series Model using Bootstrap Technique- (시계열 모형에서 붓스트랩 기법을 이용한 $\bar{x}$ 와 EWMA 관리도의 수행도 평가)

  • 송서일;손한덕
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.57
    • /
    • pp.123-129
    • /
    • 2000
  • The Bootstrap method proposed by Efron is non-parametric method which doesn't depend on the estimation of prior distribution refer to population. A typical statistical process control chart which is generally used is developed under the assumption that observations follow mutually independent and identically distributed within a sample and between samples. However, autocorrelation greatly affect the developed control chart under the assumption that observations are mutually independent. Many researchers showed that the result which was analyzed by using a typical control chart for the observations which has the correlation violated to the independence assumption can not be true. Therefore, we compared the standard method with bootstrap method and then evaluated them for x control chart and EWMA control chart by using bootstrap method which was proposed by Efron in the AR(1) model when the observations have correlation.

  • PDF

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis (다변량 통계 분석을 이용한 결측 데이터의 예측과 센서이상 확인)

  • Lee, Changkyu;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.87-92
    • /
    • 2007
  • Recently, developments of process monitoring system in order to detect and diagnose process abnormalities has got the spotlight in process systems engineering. Normal data obtained from processes provide available information of process characteristics to be used for modeling, monitoring, and control. Since modern chemical and environmental processes have high dimensionality, strong correlation, severe dynamics and nonlinearity, it is not easy to analyze a process through model-based approach. To overcome limitations of model-based approach, lots of system engineers and academic researchers have focused on statistical approach combined with multivariable analysis such as principal component analysis (PCA), partial least squares (PLS), and so on. Several multivariate analysis methods have been modified to apply it to a chemical process with specific characteristics such as dynamics, nonlinearity, and so on.This paper discusses about missing value estimation and sensor fault identification based on process variable reconstruction using dynamic PCA and canonical variate analysis.

A Method of Squeegee pressure Optimization for Mass Production Thick Film Heaters Using SPC and Neural Network

  • Luckchonlatee, Chayut;Chaisawat, Ake
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.22-25
    • /
    • 2002
  • The Mass production of ceramic heater has encountered with the estimation for the proper parameters of the printing conditions. This paper presents a method to estimate the squeegee pressure. It uses resistance distribution from the trial run with approximate squeegee pressure which comes from statistical process control (SPC). Then, the resistance distribution and its total resistance are input to the backpropagation neural networks that can recognize resistance's distribution patterns. The value of output network derived from the input value can identify to the appropriate squeegee pressure. The experimental results are demonstrated In ensure the efficiency and the reliability of this method with the accuracy 96.75 percent. Indeed, embedded on this method will aid us to reduce the loss from the normal mass production.

  • PDF

PERFORMANCE ANALYSIS OF A MULTIPLEXER WITH THE THRESHOLD BASED OVERLOAD CONTROL IN ATM NETWORKS

  • Park, Chul-Geun
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.643-658
    • /
    • 1998
  • In this paper we analyze the performance of a statistical ATM multiplexer with bursty input traffic and two thresholds in the buffer by using queueing model. Two priority levels are considered for source traffic which is modeled by Markov Modulated Poisson Process to represent the bursty characteristics. Service time distributions of two priority sources are assumed to be same and deterministic for ATM environment. The partial buffer sharing scheme with one threshold may experience a sensitive state change around the threshold. But the proposed multiplexer with two thresholds avoids this hysterical phenominon to improve the system operation.

Airborne Fine Particle Measurement Data Analysis and Statistical Significance Analysis (공기중 미세입자 측정 데이터 분석 및 통계 유의차 분석)

  • Sung Jun An;Moon Suk Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • Most of the production process is performed in a cleanroom in the case of facilities that produce semiconductor chips or display panels. Therefore, environmental management of cleanrooms is very important for product yield and quality control. Among them, airborne particles are a representative management item enough to be the standard for the actual cleanroom rating, and it is a part of the Fab or Facility monitoring system, and the sequential particle monitoring system is mainly used. However, this method has a problem in that measurement efficiency decreases as the length of the sampling tube increases. In addition, a statistically significant test of deterioration in efficiency has rarely been performed. Therefore, in this study, the statistically significant test between the number of particles measured by InSitu and the number of particles measured for each sampling tube ends(Remote). Through this, the efficiency degradation problem of the sequential particle monitoring system was confirmed by a statistical method.

  • PDF

A Study on the Build of a QbD Six Sigma System to Promote Quality Improvement(QbD) Based on Drug Design (의약품 설계 기반 품질 고도화(QbD)를 위한 QbD 6시그마 체계 구축에 관한 연구)

  • Kim, Kang Hee;Kim, Hyun-jung
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.373-386
    • /
    • 2022
  • Purpose: This study proposes the application of Six Sigma management innovation method for more systematically enhanced execution of Quality by Design (QbD) activities. QbD requires a deeper understanding of the product and process at the design and development stage of the drug, and it is very important to ensure that no fault is fundamentally generated through thorough process control. Methods: Analyzing the background and specific procedures of quality improvement based on the drug design basis, and analyzing the key contents of each step, we have differentated and common points from the 6 Sigma methodology. We propose a new model of Six Sigma management innovation method suitable for pharmaceutical industry. Results: Regulatory agencies are demanding results from statistical analysis as a scientific basis in developing medicines to treat human life through quality improvement activities based on drug design. By utilizing the education system to improve the statistical analysis capacity in the Six Sigma activities and operating the 6 Sigma Belt system in conjunction, it helped systematically strengthen the execution power of quality improvement activities based on pharmaceutical design based on the members of the pharmaceutical industry. Conclusion: By using QbD Six Sigma, which combines quality enhancement based on pharmaceutical design basis and Six Sigma methodology suitable for pharmaceutical industry, it is possible to obtain satisfactory results both by pharmaceutical companies and regulators by using appropriate statistical analysis methods for preparing scientific evidence data required by regulatory.

A Study on Energy Usage Monitoring and Saving Method in the Sewage Treatment Plant (공공하수처리시설에서 에너지 사용현황 및 절감방안 연구)

  • Kim, Jongrack;Rhee, Gahee;You, Kwangtae;Kim, Dongyoun;Lee, Hosik
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.535-545
    • /
    • 2020
  • This study aims to conserve and monitor energy use in public sewage treatment plants by utilizing data from the SCADA system and by controlling the aeration rate required for maintaining effluent water quality. Power consumption in the sewage treatment process was predicted using the equipment's uptime, efficiency, and inherent power consumption. The predicted energy consumption was calibrated by measured data. Additionally, energy efficiency indicators were proposed based on statistical data for energy use, capacity, and effluent quality. In one case study, a sewage treatment plant operated via the SBR process used ~30% of energy consumed in maintaining the bioreactors and treated water tanks (included decanting pump and cleaning systems). Energy consumption analysis with the K-ECO Tool-kit was conducted for unit processing. The results showed that about 58.7% of total energy consumed was used in the preliminary and biological treatment rotating equipment such as the blower and pump. In addition, the energy consumption rate was higher to the order of 19.2% in the phosphorus removal process, 16.0% during sludge treatment, and 6.1% during disinfection and discharge. In terms of equipment energy usage, feeding and decanting pumps accounted for 40% of total energy consumed following 27% for blowers. By controlling the aeration rate based on the proposed feedback control system, the DO concentration was reduced by 56% compared pre-controls and the aeration amount decreased by 28%. The overall power consumption of the plant was reduced by 6% via aeration control.