• 제목/요약/키워드: A Derivative Free Kalman Filter

검색결과 3건 처리시간 0.016초

언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용 (Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization)

  • 권오신
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.552-559
    • /
    • 2005
  • 실시간 순환형 훈련 알고리즘(RTRL)과 같이 경사법에 의해 훈련되는 순환형 뉴럴 네트웍(RNN)은 수렴속도가 매우 느린 단점을 지니고 있다. 이 알고리즘은 또한 오차 역전달 처리과정에서 결코 쉽지 않은 미분 계산을 필요로 한다. 본 논문에서는 완전하게 결합된 RNN의 훈련을 위하여 소위 언센티드 칼만필터라고 불리우는 미분없는 칼만필터 훈련 알고리즘을 시스템의 상태공간 상에서 표현하였다. 미분없는 칼만필터 훈련 알고리즘은 순환형 뉴럴 네트웍 훈련시 미분 계산 없이 매우 빠른 수렴속도와 좋은 추정 성능을 보여준다. 비선형 채널 등화 실험을 통하여 미분 없는 칼만필터 훈련 알고리즘을 이용한 RNN의 성능이 향상되었음을 보였다.

Parameter Estimation of Recurrent Neural Equalizers Using the Derivative-Free Kalman Filter

  • Kwon, Oh-Shin
    • Journal of information and communication convergence engineering
    • /
    • 제8권3호
    • /
    • pp.267-272
    • /
    • 2010
  • For the last decade, recurrent neural networks (RNNs) have been commonly applied to communications channel equalization. The major problems of gradient-based learning techniques, employed to train recurrent neural networks are slow convergence rates and long training sequences. In high-speed communications system, short training symbols and fast convergence speed are essentially required. In this paper, the derivative-free Kalman filter, so called the unscented Kalman filter (UKF), for training a fully connected RNN is presented in a state-space formulation of the system. The main features of the proposed recurrent neural equalizer are fast convergence speed and good performance using relatively short training symbols without the derivative computation. Through experiments of nonlinear channel equalization, the performance of the RNN with a derivative-free Kalman filter is evaluated.

Experimental and numerical study of autopilot using Extended Kalman Filter trained neural networks for surface vessels

  • Wang, Yuanyuan;Chai, Shuhong;Nguyen, Hung Duc
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.314-324
    • /
    • 2020
  • Due to the nonlinearity and environmental uncertainties, the design of the ship's steering controller is a long-term challenge. The purpose of this study is to design an intelligent autopilot based on Extended Kalman Filter (EKF) trained Radial Basis Function Neural Network (RBFNN) control algorithm. The newly developed free running model scaled surface vessel was employed to execute the motion control experiments. After describing the design of the EKF trained RBFNN autopilot, the performances of the proposed control system were investigated by conducting experiments using the physical model on lake and simulations using the corresponding mathematical model. The results demonstrate that the developed control system is feasible to be used for the ship's motion control in the presences of environmental disturbances. Moreover, in comparison with the Back-Propagation (BP) neural networks and Proportional-Derivative (PD) based control methods, the EKF RBFNN based control method shows better performance regarding course keeping and trajectory tracking.