• Title/Summary/Keyword: A Biomass

Search Result 3,824, Processing Time 0.039 seconds

Optimization of Mass cultivation Media for the Production of Biomass and Natural Colourants from Two Marine Cyanobacteria by a Mathematical Design of Experiments

  • Sekar, S.;Priya, S.Sri Lavanya;Roy, P.Wesley
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.157-163
    • /
    • 2000
  • Optimization of chemicals in the large scale sea water medium and inoculum for biomass and natural colourants production in the marine cyanobacteria, Phomidium tenue BDU 46241 (phycoerythrin producer) and P.valderianum BDU 30501 (phycocyanin producer) was carried out by experiments in L8 orthogonal array. Mathematical analysis revealed the significance of these factors. The factor(s) that critically control the yield varied with the organism and the end-product further, the desirable level of these factors between the normal and a higher level tested was identified and improved media were evolved. In both cyanobacteria, higher level of $K_2$$HPO_4$, $NaNO_3$ and inoculum with normal level of ferric ammonium citrate was found to be desirable for biomass production and additionally, higher level of $MgSO_4$ for pigment production. The level of other factors varied with the organism and the end-product. Confirmation experiments showed that the clues obtained based on mathematical experimentation are valid. In P.tenue, the medium optimized for biomass production increased the yield of biomass by 495% and the medium optimized for phycoerythrin production increased the yield of biomass by 408% with 30% increase in phycoerythrin content of the biomass. Similarly in P.valderianum, the medium optimized for biomass production increased the yield of biomass by 224% and the medium optimized for phycocyanin production increased the yield of biomass by 143% with 44% increase in phycocyanin content of the biomass.

  • PDF

The Proposal for High-concentrated Biomass Utilization System in Jeju (제주지역 고농도 biomass 활용 시스템 제안)

  • Kang, Jin-Young;Lee, Su-Mi;Huh, Mock
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.51-58
    • /
    • 2009
  • In this paper checked up biomass which occurs in the Jeju as are classified as organic waste for integrated management system for review and circulation of resources. Biomass which occurs in the Jeju was the 10,818 tons of sludge, 61,284 tons of food-waste, 1,519,000 tons of livestock. Sludge is treated marine discharge, food-waste is treated regeneration and livestock is treated in the form of recycling. How to establish "System used by mechanism of recycling management on biomass resources" to introduce biomass town created by Hita-city, Oita-ken in Japan. Also there established a model system to building for recycling management of biomass and then checked up the economics. According to the report, it has the difference in facilities, but it will switch to a surplus in 4 years, therefore it was confirmed that the economy. To be considered priority most livestock in "System used by mechanism of recycling management on biomass resources" in Jeju. So it is introduced the urgent problem and the problem awaiting solution on treating livestock in this study.

  • PDF

Notes on the biomass expansion factors of Quercus mongolica and Quercus variabilis forests in Korea

  • Li, Xiaodong;Son, Yeong-Mo;Lee, Kyeong-Hak;Kim, Rae-Hyun;Yi, Myong-Jong;Son, Yo-Whan
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • Biomass expansion factors, which convert timber volume (or dry weight) to biomass, are used for estimating the forest biomass and accounting for the carbon budget at a regional or national scale. We estimated the biomass conversion and expansion factors (BCEF), biomass expansion factors (BEF), root to shoot ratio (R), and ecosystem biomass expansion factor (EBEF) for Quercus mongolica Fisch. and Quercus variabilis Bl. forests based on publications in Korea. The mean BCEF, BEF, and R for Q. mongolica was 1.0383 Mg/$m^3$ (N = 27; standard deviation [SD], 0.5515), 1.3572 (N = 27; SD, 0.1355), and 0.2017 (N = 32; SD, 0.0447), respectively. The mean BCEF, BEF, and R for Q. variabilis was 0.7164 Mg/$m^3$ (N = 17; SD, 0.3232), 1.2464 (N = 17; SD, 0.0823), and 0.1660 (N = 8; SD, 0.0632), respectively. The mean EBEF, as a simple method for estimating the ground vegetation biomass, was 1.0216 (N = 7; SD, 0.0232) for Q. mongolica forest ecosystems, and 1.0496 (N = 8; SD, 0.0725) for Q. variabilis forest ecosystems. The biomass expansion factor values in this study may be better estimates of forest biomass in Q. mongolica or Q. variabilis forests of Korea compared with the default values given by the Intergovernmental Panel on Climate Change (IPCC).

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

Biomass Combustion Performance and Ash Characteristics (바이오매스의 연소 성능과 회재 특성)

  • Moon, Jihong;Kim, Kwangsoo;Jeong, Jaeyong;Park, Minsun;Park, Uenhyae;Yoon, Jeongjun;Hwang, Jungho;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.227-229
    • /
    • 2012
  • Diversification of combustion fuel is the demands of the times and biomass is the most attractive option since it can contribute to the prevention of global warming at the same time. Due to the national renewable obligation, generally called Renewable Portfolio Standard (RPS), many power companies are considering direct combustion of biomass or co-firing with coal. In order to use biomass as a fuel, informations of its combustion characteristics and ash related problems should be investigated. In this study, combustion performance of biomass was assessed in a bubbling fluidized bed combustor, and ash characteristics of various biomass fuels were studied with standard test method.

  • PDF

Methodology for Regional Forest Biomass Estimation Using MODIS Data

  • Yu, Xinfang;Zhuang, Dafang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.325-327
    • /
    • 2003
  • Forest biomass is the basis of forest ecosystem. With the rapid development of remote sensing and computer technology, forest biomass estimation using remote sensing data is paid great attention and has acquired great achievements. This article focuses on discussion of methods of forest biomass estimation methods using Terra/MODIS data in Northeast China. The research include: combining the MODIS time series parameters with seasonal characteristics of forest species to identify major forest species; establishing a model to estimate forest biomass based on forest species; analyzing the effects of the existent forest biomass and increasing biomass on terrestrial carbon cycle. This research can help to make clear the mechanism of carbon cycle.

  • PDF

Effects of Composted Pig Manure Application on Enzyme Activities and Microbial Biomass of Soil under Chinese Cabbage Cultivation (돈분퇴비의 시용이 토양의 미생물체량 및 효소활성에 미치는 영향)

  • Weon, Hang-Yeon;Kwon, Jang-Sik;Shin, Yong-Kwang;Kim, Seung-Hwan;Suh, Jang-Sun;Choi, Woo-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.109-115
    • /
    • 2004
  • To elucidate the effects of composted pig manure on soil biochemical properties, composted pig manure was amended in a sandy loam soil and Chinese cabbage was grown. Composted pig manure treatments included 8, 29 and $57Mg\;ha^{-1}$ for CM-08, CM-29, and CM-57 plots, respectively. Biomass contents and enzymes activities in the non-rhizophere soil were measured. Activities of protease, phosphomonoesterase and dehydrogenase in the plot CM-57 increased to 2.3, 1.6, and 2.4 fold as compared with those of the control plot. Soil microbial biomass contents increased in proportion to the application rates of compost and biomass C, N, and P in the plot CM-59 were 4.3, 3.4, 2.8-fold higher than those of control p1ot(no fertilizer), respectively. During cultivation of Chinese cabbage, biomass C and N were higher in the middle growth stage, although biomass P was the highest in the early growth stage. The average ratio of biomass C:N:P was 11:2:1, and proportion of biomass C and N in the soil organic C and N was 1.1 and 3.6%, respectively. Activities of protease and dehydrogenase had significant correlations with biomass C and P.

Seasonal Variation in the Biomass of Eelgrass (Zostera marina) and Epiphytic Algae in Two Eelgrass Beds around Namhae Island in Korea

  • Kwak, Seok-Nam;Huh, Sung-Hoi
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.219-226
    • /
    • 2009
  • Seasonal variation in the biomass of eelgrass (Zostera marina) and epiphytic algae in two eelgrass beds (Dongdae and Aenggang Bay) around Namhae Island was investigated throughout 2005. Shoot density and eelgrass biomass differed across months and locations. Peak shoot density occurred from April to August 2005, whereas eelgrass biomass was higher in July and August 2005. Shoot density as well as eelgrass biomass were higher in Dongdae Bay compared to Aenggang Bay. A total of 21 epiphytic algal species (4 Chlorophyta, 2 Phaeophyta, and 15 Rhodophyta) were collected, and dominant species included Polysiphonia japonica, Lomentaria hakodantensis, Symphyocladia latiuscula, Champia sp., and Heterosiphonia japonica. Seasonal variation in both the species composition and biomass of epiphytic algae was substantial: peak epiphytic algal biomass occurred in January and December 2005. We also observed high epiphytic algal biomass in the eelgrass bed of Dongdae Bay. Seasonal changes in the biomass of eelgrass and epiphytic algae were primarily influenced by water temperature, whereas those of the epiphytic algal community were also correlated with eelgrass (substrate) morphology and growth, the life cycle of epiphytic algae, and physical characteristics within eelgrass beds. The spatial variation of eelgrass density and biomass were also limited by sediment characteristics.

Evaluation of Exposure Times for Periphyton Biomass Estimate using Artificial Substrata in Headwater Streams (상류하천에서의 인공저층을 이용한 부착조류의 생체량 측정을 위한 노출기간 평가)

  • Kim, Hyun-Woo;Ha, Kyong;Joo, Gea-Jae
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.112-115
    • /
    • 1998
  • During the spring and fall of 1994 and winter of 1995, the exposure time of periphyton biomass on terval. In the streams with low periphyton biomass (chi. a: 2-4 mg/$m^2$) in natural rocks, biomass of arttificial substrata (unglazed tile: $3.7{\times}9.5{\times}2 cm$) exceeded that of the natural rocks after 28 days, while sites with high biomass (chi. a: 20-60 mg/$m^2$) in natural rocks showed slower biomass accumulation after 40 days. Due to the high licht input and temperature in a Partially shaded mountain stream, development of periphyton biomass in spring occurred faster than that of winter. In general, development of periphyton biomass placed on artificial substrata took 4-5 weeks in spring and at least 6 weeks In winter to reach the natural level.

  • PDF

Nitrifying Bacterial Community Structure of a Full-Scale Integrated Fixed-Film Activated Sludge Process as Investigated by Pyrosequencing

  • Kim, Taek-Seung;Kim, Han-Shin;Kwon, Soon-Dong;Park, Hee-Deung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.293-298
    • /
    • 2011
  • Nitrifying bacterial community structures of suspended and attached biomasses in a full-scale integrated fixed-film activated sludge process were investigated by analyzing 16S rRNA gene sequences obtained from pyrosequencing. The suspended biomass had a higher number of ammonia-oxidizing bacterial sequences (0.8% of total sequences) than the attached biomass (0.07%), although most of the sequences were within the Nitrosomonas oligotropha lineage in both biomasses. Nitrospira-like nitrite-oxidizing bacterial sequences were retrieved in the suspended biomass (0.06%), not in the attached biomass, whereas the existence of Nitrobacter-like sequences was not evident. The suspended biomass had higher nitrification activity (1.13 mg N/TSS/h) than the attached biomass (0.07 mg N/TSS/h). Overall, the results made it possible to conclude the importance of the suspended biomass, rather than the attached biomass, in nitrification in the wastewater treatment process studied.