• Title/Summary/Keyword: A Biomass

Search Result 3,811, Processing Time 0.034 seconds

Seasonal Variation in Species Composition of Estuarine Fauna Collected by a Stow Net in the Han River Estuary on the mid-western coast of Korea (한강 하구역 유영생물의 종조성과 계절 변동)

  • Hwang, Sun-Do;Rhow, Jin-Goo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.72-85
    • /
    • 2010
  • Seasonal variation in species composition of estuarine fauna in the Han River estuary was determined using monthly samples collected near Ganghwa Island by a bag net from February to December 2009. Total number of species was 86: 54 species of fishes, 16 species of shrimps of crustacean, 12 species of other crustacean such as craps and so on, 3 species of cephalopods and 1 species of jellyfish. Of a total of 86 species, Palaeman carinicauda (32.6%), Acetes japonicus (15.9%), Palaemon gravieri (9.9%), Portunus trituberculatus (7.7%) and Acetes chinensis (6.9%) were predominated in abundance. These 5 crustacean accounted for 73% of total. Abundance, biomass and diversity of Han River estuarine fauna were high in spring and autumn, indicating typical pattern of temperate area. Out of dominant species, the brackish residence species such as Coilia nasus, Chelon haematocheilus, Mugil cephalus, Synechogobius hasta, Lophiogobius ocellicauda, Tridentiger barbatus, Palaeman carinicauda, Palaemon gravieri were collected almost year-round and predominated in abundance. Coastal migratory fauna species such as Coilia mystus, Thryssa hamiltonii, Thryssa adelae, Sardinella zunasi, Engraulis japonicus, Portunus trituberculatus, Acetes japonicus, Collichthys lucidus, Pampus argenteus were most plentiful from spring through autumn. Their adult coastal migratory entered the estuary in spring and large numbers of their juveniles were grew in summer and autumn until moving out to deeper waters for over-wintering, indicating they use estuary as nursing ground. Diadromous fish such as Anguila japonica adults were collected in autumn during their downstream migration. Brackish fauna and crustacean, especially shrimps were predominant, and few contaminant indicator species collected in the Han River estuary, indicating this area maintains the characteristics of natural estuary ecosystem.

Environmental Management of Marine Cage Fish Farms using Numerical Modelling (수치모델을 이용한 해상어류가두리양식장의 환경관리 방안)

  • Kwon, Jung-No;Jung, Rae-Hong;Kang, Yang-Soon;An, Kyoung-Ho;Lee, Won-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.4
    • /
    • pp.181-195
    • /
    • 2005
  • To study the effects of aquaculture activity of marine cage fish farms on marine environment, field researches including hydrography, sediment, benthos and trap experiment at the marine cage fish farms(Site A) around estuaries of Tongyeong city were carried out during June $26\~27$, 2003. A simulation using numerical model-DEPOMOD was conducted to predict the solid deposition from fish cage and to assess the probable solid deposition, and the efficiency of environmental management of marine cage fish farms was studied. The marine cage fish farms cultured mainly common sea bass (Lateolabrax japonicus), red seabream (Pagrus major), striped breakperch (Oplegnathus fasciatus) and black rockfish(Sebastes schlegeli), and total amount of cultured fish of the Site A were 23.1MT. The amount of husbandry fish by unit area(and volume) of the fish cage was $43.0kg\;m^{-2}(6.1kg\;m^{-3})$. The daily mean amounts of food fed by unit biomass and cage area were $30.8g\;kg^{-1}day^{-1},\;1.32kg\;m^{-2}day^{-1},$ respectively, at the Site A. The concentration of ORP of the sediment below the center at the Site A was -334.6 mV and the concentrations of AVS, COD, Carbon and Nitrogen were $0.43mg\;g^{-1}dry,\;17.75mg\;g^{-1}dry,\;10.19mg\;g^{-1}dry\;and\;3.49mg\;g^{-1}dry$, respectively. Capitella capitata was dominant benthic species which occupied $57.8\%$ of total species, and the Infaunal Trophical Index(ITI) was marked below 20 within 20 m distance from the edge of the Site A. The result of trap experiment, the solid deposition from the Site A was $34,485g\;m^{-2}yr^{-1}$ at 0 m from the center of the cage and $18,915g\;m^{-2}yr^{-1}$ at 42 m. From a model simulation, it was estimated that using a model simulation, the proportion of unfed food was $40\%$ at the Site A and the annual total amount of solid deposition was 63,401 accounting for $24.4\%$ of the annual total food fed at the Site A. The area solid deposition settled was estimated to be $8,450m^2$, which was about 16 times of the total area of fish cage at the Site A. And concerning ITI and abundance of benthos, the model predicted that sustainable solid flux at the Site A was below $10,000gm^{-2}yr^{-1}$. The percentage of food wasted was main element of solid deposition at the marine cage fish farms, and for minimizing solid deposition it is necessary to increase the efficiency of the food uptake. Based on the result of the model simulation, if the percentage of food wasted decreases to $10\%$ from the current $40\%$, then the solid deposition could decrease to a half. In addition, it was predicted that if farmers use EP pellets as food fed instead of MP and fish trash, solid deposition could decrease by $57\%$. Also this study proposes that the cage facility ratio of the licensed area be decreased to less than $5\%$ to minimize the sediment pollution.

Effect of Supplementary Feeding of Concentrate on Nutrient Utilization and Production Performance of Ewes Grazing on Community Rangeland during Late Gestation and Early Lactation

  • Chaturvedi, O.H.;Bhatta, Raghavendra;Santra, A.;Mishra, A.S.;Mann, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.983-987
    • /
    • 2003
  • Malpura and Kheri ewes (76) in their late gestation, weighing $34.40{\pm}0.95kg$ were randomly selected and divided into 4 groups of 19 each (G1, G2, G3 and G4). Ewes in all the groups were grazed on natural rangeland from 07.00 h to 18.00 h. Ewes in G1were maintained on sole grazing while ewes in G2, G3 and G4, in addition to grazing received concentrate mixture at the rate of 1% of their body weight during late gestation, early lactation and entire last quarter of pregnancy to early quarter of lactation, respectively. The herbage yield of the community rangeland was 0.82 metric ton dry matter/hectare. The diet consisted of (%) Guar (Cyamopsis tetragonoloba) bhusa, (59.2), Babool pods and leaves (17.2), Bajra (Pennisetum typhoides) stubbles (8.8), Doob (5.3), Aak (4.2) and others (5.3). The nutrient intake and its digestibility were higher (p<0.01) in G2, G3 and G4 as compared to G1 because of concentrate supplementation. The intakes of DM ($g/kg\;W{^0.75}$), DCP ($g/kg\;W{^0.75}$) and ME ($MJ/kg\;W{^0.75}$) were 56.7, 5.3 and 0.83; 82.7, 12.2 and 1.16; 82.7, 12.1 and 1.17 and 83.1, 12.3 and 1.18 in G1, G2, G3 and G4, respectively. The per cent digestibility of DM, OM, CP, NDF, ADF and cellulose was 57.9, 68.8, 68.7, 52.3, 37.5 and 68.4; 67.6, 76.1, 82.3, 60.6, 44.5 and 73.4; 67.6, 76.1, 81.5, 60.6, 44.8 and 74.5 and 67.6, 76.1, 82.3, 60.6, 44.7 and 73.3 in G1, G2, G3 and G4, respectively. The nutrient intake of G2, G3 and G4 ewes was sufficient to meet their requirements. The ewes raised on sole grazing lost weight at lambing in comparison to advanced pregnancy. However, ewes raised on supplementary feeding gained 1.9-2.5 kg at lambing. The birth weight of lambs in G2 (3.92) and G4 (4.07) was higher (p<0.01) than G1 (2.98), where as in G1 and G3 it was similar. The weight of lambs at 15, 45 and 60 days of age were higher in G2, G3 and G4 than in G1. Similarly, the average daily gain (ADG) after 60 days was also higher in G2, G3 and G4 than in G1. The milk-yield of lactating ewes in G2, G3 and G4 increased up to 150-250 g per day in comparison to G1. The birth weight, weight at 15, 30, 45 and 60 days, weight gain and ADG at 30 or 60 days was similar both in male and female lambs. It is concluded from this study that the biomass yield of the community rangeland is low and insufficient to meet the nutrient requirements of ewes during late gestation and early lactation. Therefore, it is recommended concentrate supplementation at the rate of 1% of body weight to ewes during these critical stages to enhance their production performance, general condition as well as birth weight and growth rate of lambs.

Bionomics of Tetranychus urticae Koch on Eggplants under Various Potassium Regimes in Controlled Environment (시설 재배 가지에서 칼리 시비 수준에 따른 점박이응애의 생물적 특성)

  • Kim, Ju;Lee, Sang-Koo;Kim, Jeong-Man;Kim, Tae-Heung;Lim, Ju-Rac;Chon, Hyoung-Gwon;Shin, Yong-Kyu
    • Korean journal of applied entomology
    • /
    • v.47 no.3
    • /
    • pp.217-226
    • /
    • 2008
  • Development of T. urticae was studied on the leaves of eggplant grown in hydroponics with potash contents of 0 mM, 2 mM, 6 mM, and 12 mM. As the levels of potash increased, that of nitrogen decreased and that of P, K, Mg increased in the plant. While contents of crude protein and fiber decreased, those of ash and sugar increased. Carbohydrate content was the highest at 2 mM. Water contents increased as those of potash increased with the exception at 0 mM. Biomass was the heaviest as 552.7 g at 6 mM and the lightest at 0 mM. Leaf thickness and the content of chlorophyll increased as the content of potash increased. Laboratory leaf disc tests provided with various potash levels revealed that feeding and oviposition preferences of T. urticae were high at 6 mM and 12 mM, respectively. Ratio of damaged leaf by naturally occurring T. urticae on eggplants of 99 days post-transplant in the greenhouse was the highest at 6 mM. Development of immature stages of T. urticae shortened as the levels of potash increased with a less tendancy in male than in female. No differences were detected in adult longevity and oviposition period but the number of eggs laid was the most as 84.7 at 6 mM and the least as 40.6 at 0 mM. There were no differences in the rate of egg hatch and the ratio of sex. $R_o,\;r_m,\;and\;{\lambda}$ were the highest at 6 mM and the lowest at 0 mM. T and Dt were the lowest at 6 mM and the highest at 0 mM. There was a descending trand of T. urticae developmet when levels of potash either gets high or low in the hydroponics.

Effect of Fish Meal Liquid Fertilizer Application on Soil Characteristics and Growth of Cucumber(Cucumis sativus L.) for Organic Culture (유기농 오이재배를 위한 어분액비 공급이 토양특성 및 오이 수량에 미치는 영향)

  • An, Nan-Hee;Cho, Jung-Rai;Gu, Ja-Sun;Kim, Young-ki;Han, Eun-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.13-21
    • /
    • 2017
  • This study was carried out to evaluate the application effects of fish meal liquid fertilizer on soil characteristics and growth of cucumber for organic cultivation. Cucumber in greenhouse was transplanted on March $31^{th}$ in 2016, and the experimental treatments involve six treatments: No fertilizer, 0, 25, 50, and 100 mg/L N application by fish meal liquid fertilizer and chemical fertilizer. In the results of soil chemical property, application of 100 mg/L of fish meal liquid fertilizer showed a significant differences in pH, K, and Mg contents. The soil microbial community varied in relation to the fish meal liquid fertilizer treatments. Microbial biomass was lower in the chemical fertilizer than in the liquid fertilizer treatment. Result of principal component analysis obtained from Ecoplate showed that fish meal liquid fertilizer treatments, no liquid fertilizer, chemical fertilizer, and no fertilizer were divided into distinct groups, with the no fertilizer treatment located furthest from the other treatments. There were no significant differences in plant height of cucumber between the fish meal liquid fertilizer treatments and chemical fertilizer treatments. Also, the cucumber yield did not vary significantly between the concentrations of liquid fertilizers, and there were also no significant differences in the yield among the fish meal liquid and chemical fertilizer treatments. In conclusion, it is suggested that the application of fish meal liquid fertilizer can be used as a additional fertilizer for cucumber production with organic culture in greenhouse.

Reduction of Carbon Dioxide and Nitrous Oxide Emissions through Various Biochars Application in the Upland (밭 토양에서 다양한 바이오차 시용에 따른 이산화탄소 및 아산화질소 감축효과)

  • Lee, Sun-Il;Kim, Gun-Yeob;Choi, Eun-Jung;Lee, Jong-Sik;Jung, Hyun-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.11-18
    • /
    • 2018
  • Biochar is a carbon-rich solid product obtained by the pyrolysis of biomass. It has been suggested to mitigate climate change through increased carbon storage and reduction of greenhouse gas emission. The objective of this study was to evaluate carbon dioxide ($CO_2$) and nitrous oxide ($N_2O$) emissions from soil after various biochars addition. The biochars were produced by pyrolysing pear branch, rice hull and bean straw at $400{\sim}500^{\circ}C$. The treatments were consisted of a control without input of biochar and three type biochars input as 5.0 Mg/ha. Emissions of $CO_2$ and $N_2O$ from upland soil were determined using closed chamber for 8 weeks at $25^{\circ}C$ of incubation temperature. It was shown that the cumulative $CO_2$ were 207.1 to $255.2g\;CO_2/m^2$ for biochar input treatments and $258.6g\;CO_2/m^2$ for the control after experimental periods. The cumulative $CO_2$ emission was slightly decreased in biochar input treatment compared to the control. It was appeared that cumulative $N_2O$ emissions were $2,890.6mg\;N_2O/m^2$ for control, 379.7 to $525.2mg\;N_2O/m^2$ for biochar input treatment at the end of experiment. All biochar treatments were found to significantly reduce $N_2O$ emission by 82~87%. Consequently the biochar from byproducts such as pear branch, rice hull and bean straw could suppress the soil $N_2O$ emission. The results from the study imply that biochar can be utilized to reduce greenhouse gas emission from the upland field.

Seasonal Phytoplankton Growth and Distribution Pattern by Environmental Factor Changes in Inner and Outer Bay of Ulsan, Korea (울산만 내측과 외측에서 계절적 환경요인의 변화에 의한 식물플랑크톤 성장 및 분포)

  • LEE, MIN-JI;KIM, DONGSEON;KIM, YOUNG OK;SOHN, MOONHO;MOON, CHANG-HO;BAEK, SEUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.24-35
    • /
    • 2016
  • To assess the relationship between environmental factors and seasonal phytoplankton community structure, we investigated abiotic and biotic factors in Ulsan Bay, Korea. We divided the bay into two areas based on geographical characteristics and compared the difference in each factor between inner and outer bay with t-test statistics. As a result, temperature in the outer bay was higher than that of the inner bay during winter (t = -5.833, p < 0.01) and autumn (p > 0.05). However, opposite trend was observed during spring (t = 4.247, p < 0.01) and summer (t = 2.876, p < 0.05). Salinity was significantly lower in the inner bay than in the outer bay in winter, spring, and summer (p < 0.01). However, the salinity was not significantly different between the inner and the outer bay in the autumn (p > 0.05). In particular, high nutrient concentration was observed in most stations during winter season due to vertical well mixing. The nutrient concentration was significantly higher in surface layers of inner bay after rainfall, particularly in the summer. The relative contribution (approximately 70%) of < $20{\mu}m$ (nano and pico) size phytoplankton was increased in all seasons with continuously low nutrients from the offshore water due to their adaption to low nutrient without other large competitors. Interestingly, high population of Eutreptiella gymnastica was kept in the inner bay during the spring and summer associated with high DIN (nitrate+nitrite, ammonium) after river discharge following rainfall, suggesting that DIN supply might have triggered the increase of Eutreptiella gymnastica population. In addition, high density of freshwater species Oscillatoria sp. and Microcystis sp. were found in several stations of the inner bay that were provided with large amounts of freshwater from the Tae-wha River. Diatom and cryptophyta species were found to be dominant species in the autumn and winter. Of these, centric diatom Chaetoceros genus was occupied in the outer bay in the autumn. Cryptophyta species known as opportunistic micro-algae were found to have high biomass without competitors in the inner bay. Our results demonstrated that Ulsan Bay was strongly affected by freshwater from Tae-wha River during the rainy season and by the surface warm water current from the offshore of the bay during dry season. These two external factors might play important roles in regulating the seasonal phytoplankton community structures.

Assessing the Plankton Dynamics in Lakes and Reservoirs Ecosystem in the Southwestern Parts of Korea (국내 남서부지역 호수 및 저수지 생태계의 플랑크톤 동태 변화)

  • Kim, Hyun-Woo;La, Geung-Hwan;Jeong, Kwang-Seuk;Park, Jong-Hwan;Huh, Yu-Jung;Kim, Sang-Don;Na, Jeong-Eun;Jung, Myoung-Hwa;Lee, Hak-Young
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • This study compares and contrasts the dynamics of plankton in 31 temperate lakes and reservoirs, and considers particularly the biomass ratio of zooplankton to phytoplankton and ecological model application. A total of 89 species of zooplankton were identified (70 rotifers, 14 cladocerans and 5 copepods) and a total of 554 species of phytoplankton were identified (176 Bacillariophyceae, 237 Chlorophyceae, 68 Cyanophyceae, and 73 other algal taxa). The total plankton abundance and species diversity were showed distinctive spatial and seasonal variation. Annual average phytoplankton density was $7,350{\pm}15,592$ cells $mL^{-1}$ (n=124), and the lowest was $855{\pm}448$ cells $mL^{-1}$ (n=4), while the highest was $72,048{\pm}13,4631$ cells $mL^{-1}$ (n=4). For zooplankton, small rotifer groups dominated the study sites, and approximately 3~10 species appeared in the study sites. Statistical analysis and an ecological model application revealed that the size of reservoirs affected the structure size of plankton community, i.e. relatively large number of species were found in smaller reservoirs. From this result, we can conclude that management strategy for the reservoir environment has to be focused more on small-size reservoirs, in terms of plankton community ecology.

Factors to Affect the Growth of Filamentous Periphytic Algae in the Artificial Channels using Treated Wastewater (하수처리수를 이용한 인공수로에서 사상성 부착조류의 성장에 영향을 미치는 요인들)

  • Park, Ku-Sung;Kim, Ho-Sub;Kong, Dong-Soo;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.100-109
    • /
    • 2006
  • This study evaluated the effects of water velocity, substrates, and phosphorus concentrations on the growth of filamentous periphytic algae (FPA) in the two types of artificial channel systems using treated wastewater. Controlled parameters included 5 ${\sim}$ 15 cm $s^{-1}$ for the water velocity; 10 and 20 mm wire meshes, natural fiber net, gravel and tile for the substrates: and 0.05 ${\sim}$ 1.0 mgP $L^{-1}$ for the P concentration. Algal growth rate of FPA was compared using both chi. a and dry weight change with time. Under the controlled water velocity range, the growth of FPA increased with the velocity, but the maximum growth rate was shown in the velocity of 10 cm $s^{-1}$. The substrate that showed the maximum growth of FPA differed between the artificial channel and indoor channel, due to the influence of suspended matters which caused the clogging of the meshed substrates. Under the controled range of P concentration, the growth rates of all three FPA species (Spirogyra turfosa, Oedogonium fovelatum, Rhizoclonium riparium) increased with the P increase, but they showed the differential growth rates among different P concentrations. The results of this study suggest that under the circumstance having an large amount of nutrients FPA develop the biomass rapidly and that even a little increase over the threshold velocity causes the detachment of filamentous periphytic algae. Thus, FPA dynamics in eutrophic streams, such as those receiving treated wastewater, seem to be sensitive to the water velocity. On the other hand, detached algal filaments could deteriorate water quality and ecosystem function in receiving streams or down-stream, and thus they need to be recognized as an important factor in water quality management in eutrophic streams.

A Comparative Study on Enhanced Phytoremediation of Pb Contaminated Soil with Phosphate Solubilizing Microorganism(PSM) and EDTA in Column Reactor (칼럼 반응조에서 Phosphate Solubilizing Microorganism(PSM)과 EDTA에 의한 납 오염토양의 식물상 복원 증진에 관한 비교연구)

  • Nam, Yoon-Sun;Park, Young-Ji;Lee, In-Sook;Bae, Bum-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.500-506
    • /
    • 2008
  • Enhanced phytoremediation with EDTA or PSM(Phosphate solubilizing microorganism) was studied using green foxtail (Setaria viridis) in columns packed with 1,200 mgPb/kg contaminated soil to investigate the effects of EDTA or PSM on the plant uptake and vertical migration of Pb. EDTA, equimolar amount of total Pb in the column soil, was administered in two methods: the one was treated with 1/6 aliquots of the equimolar EDTA every week for 6 weeks and the other was treated with single dose of the equimolar EDTA before 14 days of harvest. The results showed that higher concentrations of Pb accumulated in the biomass of green fowtail after the chemical or biological treatment. The plant-root Pb concentration in PSM treatment(M), EDTA aliquot treatment(ES), and single dose treatment(E) was 2.6, 3.0, and 3.3 times higher, respectively, than that in the plant-root of control(164.7 mg/kg). The plant-stem Pb concentration in the M, ES and E treatment was 27, 37, and 40 times higher than that in the stem of control(8.1 mg/kg). The translocation factor, the ratio of shoot/root Pb concentration, was 0.6 in the two EDTA treatment, 0.5 in the M treatment, and 0.05 in the control, respectively. The largest amount of Pb was phyto-extracted in the E treatment whereas vertical migration of EDTA was significant in the ES treatment. This result showed that a single large dose of EDTA before harvest serves better for enhanced phytoremediation of Pb. Although, treatment with PSM showed less Pb phytoextraction by the plant but enhanced both the growth of plants in the column and microbial dehydrogenase activity in the soils. Therefore, enhanced phytoextraction of Pb with PSM treatment can be an alternative option for EDTA treatment, which is toxic to plants and soil ecosystem.