• Title/Summary/Keyword: A B and C scan images

Search Result 31, Processing Time 0.028 seconds

Characteristics of Magnetic Resonance(M.R.) and Comprehension of its Imaging Mechanism (자기공명(M.R.)진단법의 특징 및 그 영상기전의 이해)

  • Chang, Jae-Chun;Hwang, Mi-Soo;Kim, Sun-Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1987
  • Magnetic Resonance (M.R.) is rapidly emerging technique that provides high quality images and potentially provides much more diagnostic information than do conventional imaging modalities. M.R.I. is conceptually quite different from currently used imaging methods. The complex nature of M.R.I. allows a great deal of flexibility in image product ion and available information, and key points are as follows. 1. M.R.I. offers a non-invasive technique with which to gene rate in vivo human images without ionizing radiation and with no known adverse biological effects. 2. Imaging mechanism of M.R.I. is quite different from conventional imaging modality and for more accurate diagnostic application, It is necessary for physician to understand imaging mechanism of M.R.I. 3. M.R. makes available basic chemical parameters that may provide to be useful for diagnostic medical imaging and more specific pathophysiologic information which are not available by alternate techniques. 4. M.R. can be produced by number of different methods. This flexibility allows the imaging technique to be applicated for particular clinical purpose. Multiplanar and three dimensional imaging may extend the imaging process beyond the single section available with current CT. 5. Future directions include efforts to; a. Further development of hard ware b. More fasternning scan time c. Respiratory and cardiac gated imaging d. Imaging of additional nuclei except hydrogen e. Further development of contrast media f. M.R. in vivo spectroscopy g. Real time M.R. imaging.

  • PDF

Differential Absorption Analysis of Nonmagnetic Material in the Phantom using Dual CT

  • Kim, Ki-Youl;Lee, Hae-Kag;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.286-292
    • /
    • 2016
  • This study evaluates the change of computer tomography (CT) number in the case of the metal artifact reduction (MAR) algorithm, using the phantom. The images were obtained from dual CT using a gammex 467 tissue characterization phantom, which is similar to human tissues. The test method was performed by dividing pre and post MAR algorithm and measured CT values of nonmagnetic materials within the phantom. In addition, the changes of CT values for each material were compared and analyzed after measuring CT values up to 140 keV, using the spectral HU curve followed by CT scan. As a result, in the cases of N rod (trabecular bone) and E rod (trabecular bone), the CT numbers decreased as keV increasing but were constant above 90 keV. In the cases of I rod (dense bone) and K rod (dense bone), the CT numbers also decreased as keV increased but were uniform above 90 keV. The CT numbers from 40 keV to 140 keV were consistent in the cases of J rod (liver), D rod (liver), L rod (muscle), and F rod (muscle). For A rod (adipose), G rod (adipose), B rod (breast) and O rod (breast), the CT numbers increased as keV increased but were constant after 90 keV. The CT numbers from 40 keV to 140 keV were consistent in the cases of C rod (lung (exhale)), P rod (lung (exhale)), M rod (lung (inhale)) and H rod (lung (exhale)). Conclusively, because dual CT exhibits no changes in image quality and is able to analyze nonmagnetic materials by measuring the CT values of various materials, it will be used in the future as a useful tool for the diagnosis of lesions.

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.

A study on Broad Quantification Calibration to various isotopes for Quantitative Analysis and its SUVs assessment in SPECT/CT (SPECT/CT 장비에서 정량분석을 위한 핵종 별 Broad Quantification Calibration 시행 및 SUV 평가를 위한 팬텀 실험에 관한 연구)

  • Hyun Soo, Ko;Jae Min, Choi;Soon Ki, Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose Broad Quantification Calibration(B.Q.C) is the procedure for Quantitative Analysis to measure Standard Uptake Value(SUV) in SPECT/CT scanner. B.Q.C was performed with Tc-99m, I-123, I-131, Lu-177 respectively and then we acquired the phantom images whether the SUVs were measured accurately. Because there is no standard for SUV test in SPECT, we used ACR Esser PET phantom alternatively. The purpose of this study was to lay the groundwork for Quantitative Analysis with various isotopes in SPECT/CT scanner. Materials and Methods Siemens SPECT/CT Symbia Intevo 16 and Intevo Bold were used for this study. The procedure of B.Q.C has two steps; first is point source Sensitivity Cal. and second is Volume Sensitivity Cal. to calculate Volume Sensitivity Factor(VSF) using cylinder phantom. To verify SUV, we acquired the images with ACR Esser PET phantom and then we measured SUVmean on background and SUVmax on hot vials(25, 16, 12, 8 mm). SPSS was used to analyze the difference in the SUV between Intevo 16 and Intevo Bold by Mann-Whitney test. Results The results of Sensitivity(CPS/MBq) and VSF were in Detector 1, 2 of four isotopes (Intevo 16 D1 sensitivity/D2 sensitivity/VSF and Intevo Bold) 87.7/88.6/1.08, 91.9/91.2/1.07 on Tc-99m, 79.9/81.9/0.98, 89.4/89.4/0.98 on I-123, 124.8/128.9/0.69, 130.9, 126.8/0.71, on I-131, 8.7/8.9/1.02, 9.1/8.9/1.00 on Lu-177 respectively. The results of SUV test with ACR Esser PET phantom were (Intevo 16 BKG SUVmean/25mm SUVmax/16mm/12mm/8mm and Intevo Bold) 1.03/2.95/2.41/1.96/1.84, 1.03/2.91/2.38/1.87/1.82 on Tc-99m, 0.97/2.91/2.33/1.68/1.45, 1.00/2.80/2.23/1.57/1.32 on I-123, 0.96/1.61/1.13/1.02/0.69, 0.94/1.54/1.08/0.98/ 0.66 on I-131, 1.00/6.34/4.67/2.96/2.28, 1.01/6.21/4.49/2.86/2.21 on Lu-177. And there was no statistically significant difference of SUV between Intevo 16 and Intevo Bold(p>0.05). Conclusion Only Qualitative Analysis was possible with gamma camera in the past. On the other hand, it's possible to acquire not only anatomic localization, 3D tomography but also Quantitative Analysis with SUV measurements in SPECT/CT scanner. We could lay the groundwork for Quantitative Analysis with various isotopes; Tc-99m, I-123, I-131, Lu-177 by carrying out B.Q.C and could verify the SUV measurement with ACR phantom. It needs periodic calibration to maintain for precision of Quantitative evaluation. As a result, we can provide Quantitative Analysis on follow up scan with the SPECT/CT exams and evaluate the therapeutic response in theranosis.

Model-based Gradient Compensation in Spiral Imaging (나선주사영상에서 모델 기반 경사자계 보상)

  • Cho, S.H.;Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • Purpose : A method to estimate a real k-space trajectory based on a circuit model of the gradient system is proposed for spiral imaging. The estimated k-space trajectory instead of the ideal trajectory is used in the reconstruction to improve the image quality in the spiral imaging. Materials and Methods : Since the gradient system has self resistance, capacitance, and inductance, as well as the mutual inductance between the magnet and the gradient coils, the generated gradient fields have delays and transient responses compared to the input waveform to the gradient system. The real gradient fields and their trajectory in k-space play an important role in the reconstruction. In this paper, the gradient system is modeled with R-L-C circuits, and real gradient fields are estimated from the input to the model. An experimental method to determine the model parameters (R, L, C values) is also suggested from the quality of the reconstructed image. Results : The gradient fields are estimated from the circuit model of the gradient system at 1.5 Tesla MRI system. The spiral trajectory obtained by the integration of the estimated gradient fields is used for the reconstruction. From experiments, the reconstructed images using the estimated trajectory show improved uniformity, reduced overshoots near the edges, and enhanced resolutions compared to those using the ideal trajectory without model. Conclusion : The gradient system was successfully modeled by the R-L-C circuits. Much improved reconstruction was achieved in the spiral imaging using the trajectory estimated by the proposed model.

  • PDF

Comparison of the accuracy of digitally fabricated polyurethane model and conventional gypsum model

  • Kim, So-Yeun;Lee, So-Hyoun;Cho, Seong-Keun;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Mi-Jung;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • PURPOSE. The accuracy of a gypsum model (GM), which was taken using a conventional silicone impression technique, was compared with that of a polyurethane model (PM), which was taken using an iTero$^{TM}$ digital impression system. MATERIALS AND METHODS. The maxillary first molar artificial tooth was selected as the reference tooth. The GMs were fabricated through a silicone impression of a reference tooth, and PMs were fabricated by a digital impression (n=9, in each group). The reference tooth and experimental models were scanned using a 3 shape convince$^{TM}$ scan system. Each GM and PM image was superimposed on the registered reference model (RM) and 2D images were obtained. The discrepancies of the points registered on the superimposed images were measured and defined as GM-RM group and PM-RM group. Statistical analysis was performed using a Student's T-test (${\alpha}=0.05$). RESULTS. A comparison of the absolute value of the discrepancy revealed a significant difference between the two groups only at the occlusal surface. The GM group showed a smaller mean discrepancy than the PM group. Significant differences in the GM-RM group and PM-RM group were observed in the margins (point a and f), mesial mid-axial wall (point b) and occlusal surfaces (point c and d). CONCLUSION. Under the conditions examined, the digitally fabricated polyurethane model showed a tendency for a reduced size in the margin than the reference tooth. The conventional gypsum model showed a smaller discrepancy on the occlusal surface than the polyurethane model.

A Study on Integrated Visualization and Mapping Techniques using the Geophysical Results of the Coastal Area of the Dokdo in the East Sea (독도 연안 해저 지구물리 자료의 통합 중첩 주제도 작성 연구)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2016
  • The purpose of this study is to integrate and visualize using mapping techniques based on precise seabed geomorphology, seafloor backscattering images and high-resolution underwater images of the nearshore area around the Dokdo, in the East Sea. We have been obtained the precise topography map using multibeam echosounder system around the nearshore area(~50 m) of the southern part of the Seodo. Side scan sonar survey for analysis seafloor backscattering images was carried out in the same area of topography data. High-resolution underwater images(zone(a), zone(b), zone(c)) were taken in significant habitat scope of the nearshore area of the southern part of the Seodo. Using the results of bathymetry, seafloor backscattering images, high-resolution underwater images, we performed an integrated visualization about the nearshore area of the Dokdo. The integrated visualizing techniques are possible to make the seabed characteristic mapping results of the nearshore area of the Dokdo. The integrated visualization results present more complex and reliable information than separate geological products for seabed environmental mapping study and it is useful to understand the relation between seafloor characteristics and topographic environments of the study area. The integrated visualizing techniques and mapping analysis need to study sustainably and periodically, for effective monitoring of the nearshore ecosystem of the Dokdo.

Lung Uptake of $^{99m}Tc-sestamibi$ during Routine Gated Exercise SPECT Imaging : Comparison with Left Ventricular Ejection Fraction and Severity of Perfusion Defect (일상적인 운동 부하 게이트 심근 관류 SPECT에서 $^{99m}Tc-sestamibi$ 폐섭취 : 좌심실 구혈률과 관류 결손 정도와의 비교)

  • Jeong, Shin-Young;Lee, Jae-Tae;Bae, Jin-Ho;Ahn, Byeong-Cheol;Lee, Kyu-Bo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.2
    • /
    • pp.83-93
    • /
    • 2003
  • Background: Lung-to-heart uptake ratio (LHR) in $^{201}Tl-chloride$ myocardial perfusion scan is believed to be a reliable marker for left ventricular (LV) dysfunction, but the clinical value of LHR is controversial for $^{99m}Tc-MIBI$ imaging. Furthermore, most of results suggesting lung uptake of $^{99m}Tc-MIBI$ as a potential marker for LV dysfunction used immediate post-stress images, instead of routine images acquired 1 hour after tracer injection. The goal of our study was to investigate whether LHR evaluated with routine gated $^{99m}Tc-MIBI$ imaging can reflect the degree of perfusion defect or left ventricular performance. Subjects and Methods: 241 patients underwent exercise $^{99m}Tc-MIBI$ myocardial SPECT were classified into normal myocardial perfusion (NP, n=135) and abnormal myocardial perfusion (AP, n=106) group according to the presence of perfusion defect. LHR was calculated from anterior projection image taken at 1-hour after injection. Two legions of interest (ROIs) were placed on left lung above LV and on myocardium showing the highest radioactivity. Subjects were classified by left ventricular ejection fraction (LVEF), as Gr-I: >50%, Gr-II: 36-50%, Gr-III: <36% and by summed stress score (SSS), as Gr-A: <4, Gr-B: 4-8, Gr-C: 9-13, Gr-D: >13, LHR was compared among these groups. Results: In NP group(n=135), LHR, were higher in men than women ($men:\;0.311{\pm}0.03,\;women:\;0.296{\pm}0.03,\;p<0.05$). Significant difference, in LHR were found between NP and AP groups both for men and women ($men:\;0.311{\pm}0.03\;vs\;.\;0.331{\pm}0.06,\;women:\;0.296{\pm}0.03\;vs.\;0.321{\pm}0.07.\;p<0.05$). There were weak negative correlation between LHR and LVEF (r=-0.342, p<0.05) and weak positive correlation between LHR and SSS (r=0.478, p<0.05) in men, but not in women (LVEF: r=-0.279, p=0.100, SSS: r=0.276, p=0.103). Increased LHR was defined when for more than mean + 2SD value ($men{\geq}0.38,\;women{\geq}0.37$) of the LHR of the subject with normal perfusion. Increased LHR were observed more frequently in subjects with lower LVEF (Gr-I: 11.1%, Gr-II: 27.0%, Gr-III: 35.4%, p<0.05) and higher SSS(Gr-A: 14.0%, Gr-B: 5.7%, Gr-C: 18.2%, Gr-D: 40.7%, p<0.05). Conclusions: LHRs obtained from routine $^{99m}Tc-MIBI$ gated SPECT images were weakly correlated with LVEF and perfusion defect. Although significant overlaps were observed between normal and abnormal perfusion group, LHRs could be used as an indirect marker of severe perfusion defect or reduced left ventricular function.

Differential Diagnosis of Metastatic Bone Disease and Benign Bone Disease on Spine SPECT in Patients with Low Back Pain (요통 환자의 척추골 SPECT에서 골전이 병변과 양성골질환의 섭취 양상 분석을 통한 감별진단이 가능한가)

  • Lee, Seung-Hun;Choi, Yun-Young;Cho, Suk-Shin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.6
    • /
    • pp.371-377
    • /
    • 2001
  • Purpose: One or more abnormal vertebrae detected on bone scintigraphy is a common finding in clinical practice, and it could pose a diagnostic dilemma especially in cancer patients. as either metastasis or benign disease may cause scintigraphic abnormality. The purpose of this study was to determine whether additional spine SPECT has a role in differentiating malignant from benign lesions in patients with back pain. Materials and Methods: We reviewed spine SPECT studios obtained over a three-year period in 108 patients. Among them, forty-five patients with abnormal SPECT and clinically followed records were evaluated (20 cancer patients were included). Uptake patterns were classified as follows: 1. Body: diffusely increased uptake, linear increased uptake of end plate, segmental increased uptake, and cold defect, 2. Posterior element: posterior to body (pedicle), posterior to Intervertebral disc space (facet joint), and spinous process. Lesions were correlated with radiological findings and with final diagnosis. Results: Sixty-nine bone lesions were detected on SFECT images, including 18 metastases, 28 degenerative diseases and 21 compression fractures. Cold defect (6) and segmental increased uptake (5) were dominant findings in metastasis; linear increased uptake (12), and facet joint uptake (15) were in degenerative change; and diffuse increased uptake (9), and linear increased uptake (9) were in compression fracture. Conclusion: Cold defect and segmental increased uptake of body were characteristic findings of metastasis, but care should be taken because compression fracture also shows segmental increased uptake in some cases. Degenerative disease was easily diagnosed because of the typical finding of linear increased uptake of end plate and facet joint. Therefore, additional bone SPECT after planar bone scan would be helpful for differentiating metastasis from benign condition in cancer patients.

  • PDF

REMINERALIZATION EFFECTS OF GLASS IONOMER RESTORATIONS ON ADJACENT INTERPOXIMAL-A MICROTOMOGRAPHIC STUDY (미세전산화 단층 촬영을 이용한 글라스 아이오노머 수복의 인접면 재광화 효과에 대한 연구)

  • Lee, Hyeok-Sang;Lee, Sang-Dae;Kim, Jung-Wook;Kim, Chong-Chul;Hahn, Se-Hyun;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.474-480
    • /
    • 2004
  • The purpose of this in vitro study was to compare the remineralizing effects of three glass ionomer cements (high filled glass ionomer cement, compomer, resin modified glass ionomer cement) with resin composite (control group) on incipient interproximal caries, and to assess long-term change of remineralization effect, in each material, evaluated by microtomography. Proximal restoration was simulated with tooth specimen and Glass Ionomer Cements. And each of these groups was placed into a closed container with artificial saliva at $37^{\circ}C$ and pH 7.0 for a time period of thirty days with constant circulation. At the end of thirty and sixty days, tomographic images were taken from these specimens with micro CT scanner. Materials used in this study were as follows. Group 1: Fuji IX GP (GC Corp., Tokyo, Japan) Group 2: Vitremer (3M ESPE, St. Paul, Minn., USA) Group 3: F2000 (3M ESPE, St. Paul, Minn., USA) Group 4: Z250 (3M ESPE, St. Paul, Minn., USA) Using density-measuring program, the micro-density of carious lesions on the specimens were measured. The mean density changes of each group were compared to the other groups to evaluate the effect of remineralization. The results were as follows: 1. The lesion density of all groups increased. 2. The mean density increase of Group 1, 2, 3 were higher than that of Group 4 every month(p<0.05). 3. There were significant differences of density increase among glass ionomer group(Group 1, 2, 3).

  • PDF