DOI QR코드

DOI QR Code

Differential Absorption Analysis of Nonmagnetic Material in the Phantom using Dual CT

  • Kim, Ki-Youl (Department of Radiology, Kyung Hee University Hospital at Gang-dong) ;
  • Lee, Hae-Kag (Department of Computer Science and Engineering, Soonchunhyang University) ;
  • Cho, Jae-Hwan (Department of Radiological Technology, Ansan Univerity)
  • Received : 2016.03.08
  • Accepted : 2016.04.04
  • Published : 2016.06.30

Abstract

This study evaluates the change of computer tomography (CT) number in the case of the metal artifact reduction (MAR) algorithm, using the phantom. The images were obtained from dual CT using a gammex 467 tissue characterization phantom, which is similar to human tissues. The test method was performed by dividing pre and post MAR algorithm and measured CT values of nonmagnetic materials within the phantom. In addition, the changes of CT values for each material were compared and analyzed after measuring CT values up to 140 keV, using the spectral HU curve followed by CT scan. As a result, in the cases of N rod (trabecular bone) and E rod (trabecular bone), the CT numbers decreased as keV increasing but were constant above 90 keV. In the cases of I rod (dense bone) and K rod (dense bone), the CT numbers also decreased as keV increased but were uniform above 90 keV. The CT numbers from 40 keV to 140 keV were consistent in the cases of J rod (liver), D rod (liver), L rod (muscle), and F rod (muscle). For A rod (adipose), G rod (adipose), B rod (breast) and O rod (breast), the CT numbers increased as keV increased but were constant after 90 keV. The CT numbers from 40 keV to 140 keV were consistent in the cases of C rod (lung (exhale)), P rod (lung (exhale)), M rod (lung (inhale)) and H rod (lung (exhale)). Conclusively, because dual CT exhibits no changes in image quality and is able to analyze nonmagnetic materials by measuring the CT values of various materials, it will be used in the future as a useful tool for the diagnosis of lesions.

Keywords

References

  1. L. Sibille, F. B. Bouallegue, A. Bourdon, and D. Mariano-Goulart, J. Nucl. Cardiol. 18, 642 (2011). https://doi.org/10.1007/s12350-011-9407-7
  2. G. J. Webster, C. G. Rowbottom, and R. I. Mackay, Radiother Oncol. 93, 553 (2009). https://doi.org/10.1016/j.radonc.2009.10.006
  3. U. Schneider, E. Pedroni, and A. Lomax, Phys. Med. Biol. 41, 111 (1996). https://doi.org/10.1088/0031-9155/41/1/009
  4. Y. Kim, W. A. Tome, and M. Bal, Radiother Oncol. 79, 198 (2006). https://doi.org/10.1016/j.radonc.2006.03.022
  5. W. A. Kalender, R. Hebel, and J. Ebersberger, Radiol. 164, 576 (1987). https://doi.org/10.1148/radiology.164.2.3602406
  6. D. D. Robertson, P. J. Weiss, E. K. Fishman, D. Magid, and P. S. Walker. J. Compute. Assist. Tomogr. 12, 236 (1988). https://doi.org/10.1097/00004728-198803000-00012
  7. D. D. Robertson, J. Yuan, G. Wang, and W. M. Vannier, and: J. Comput. Assist. Tomogr. 21, 293 (1997). https://doi.org/10.1097/00004728-199703000-00024
  8. G. Hilgers, T. Nuver, and A. Minken, J. Appl. Clin. Med. Phys. 15, 4597 (2014).
  9. G. Wang, T. Feri, and M. W. Vannier, Acad. Radiol. 7, 607 (2000). https://doi.org/10.1016/S1076-6332(00)80576-0
  10. S. Zhao. D. D. Robertson, G. Wang, B. Whiting, and K. T. Bae, IEEE Trans. Med. Imaging. 19, 1238 (2000). https://doi.org/10.1109/42.897816
  11. A. Kawamata, Y. Ariji, and R. P. Langlais, Dent. Clin. North. Am. 44, 395 (2000).
  12. D. Dabirrahmani, J. Magnussen, and R. C. Appleyard, J. Comput. Assist. Tomogr. 39, 925 (2015). https://doi.org/10.1097/RCT.0000000000000300
  13. T. G. Flohr, H. Bruder, K. Stierstorfer, M. Petersilka, B. Schmidt, and C. H. McCollough, Med. Phys. 35, 5882 (2008). https://doi.org/10.1118/1.3020756
  14. M. Petersilka, H. Bruder, B. Krauss, K. Stierstorfer, and T. G. Flohr, Technical principles of dual source CT. Eur. J. Radiol. 68, 362 (2008). https://doi.org/10.1016/j.ejrad.2008.08.013
  15. T. R. Johnson, B. Krauss, M. Sedlmair, M. Grasruck, H. Bruder, D. Morhard, C. Fink, S. Weckbach, M. Lenhard, B. Schmidt, T. Flohr, M. F. Reiser, and C. R. Becker, Eur. Radiol. 17, 1510 (2007). https://doi.org/10.1007/s00330-006-0517-6
  16. A. Graser, T. R. Johnson, M. Bader, M. Staehler, N. Haseke, K. Nikolaou, M. F. Reiser, C. G. Stief, and Becker CR, Invest. Radiol. 43, 112 (2008). https://doi.org/10.1097/RLI.0b013e318157a144
  17. A. Graser, T. R. Johnson, E. M. Hecht, C. R. Becker, C. Leidecker, M. Staehler, C. G. Stief, H. Hildebrandt, M. C. Godoy, M. E. Finn, F. Stepansky, M. F. Reiser, and M. Macari, Radiology. 252, 433 (2009). https://doi.org/10.1148/radiol.2522080557
  18. M. Periyasamy and R. Dhanasekaran, J. Magn. 20, 295 (2015). https://doi.org/10.4283/JMAG.2015.20.3.295
  19. M. S. Kim, K. S. Park, and J. H. Cho, J. Magn. 19, 261 (2015).
  20. Y. C. Heo, H. K. Lee, C. S. Park, and J. H. Cho, J. Magn. 20, 40 (2015). https://doi.org/10.4283/JMAG.2015.20.1.040
  21. J. H. Lee, H. K. Lee, J. H. Cho, and M. J. Cheon, J. Magn. 19, 372 (2014). https://doi.org/10.4283/JMAG.2014.19.4.372
  22. J. H. Cho, J. H. Lee, C. S. Park, S. Y. Lee, J. Lee, D. H. Moon, and H. K. Lee, J. Magn. 19, 248 (2014). https://doi.org/10.4283/JMAG.2014.19.3.248