• 제목/요약/키워드: 9Cr-ODS Steel

검색결과 4건 처리시간 0.02초

Y2O3 입자 분산강화 9Cr 강의 상온 및 고온 파괴저항특성 (Fracture Resistances of Y2O3 Particle Dispersion Strengthened 9Cr Steel at Room Temperature and High Temperatures)

  • 윤지현;강석훈;이용복;김성수
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.1-7
    • /
    • 2012
  • The fracture resistance and tensile properties of $Y_2O_3$ oxide dispersion strengthened steel containing 9 wt% Cr(9Cr-ODS) were measured at various temperatures up to $700^{\circ}C$. The fracture characteristics were compared with those of commercial E911 ferritic/martensitic steel. The strength of 9Cr-ODS was at least 30% higher than that of E911 steel at the test temperatures below $500^{\circ}C$. The strength difference between the two materials was almost diminished at $700^{\circ}C$. 9Cr-ODS showed cleavage fracture behavior at room temperature and unstable crack growth behaviors at $300^{\circ}C$ and $500^{\circ}C$. The J-R fracture resistance of 9Cr-ODS was much lower than that of E911 steel at all temperatures. It was deduced that the coarse $Cr_2O_3$ particles that were formed during the alloying process provided the crack initiation sites of cleavage fracture in 9Cr-ODS.

Microstructure Refinement and Strengthening Mechanisms of a 9Cr Oxide Dispersion Strengthened Steel by Zirconium Addition

  • Xu, Haijian;Lu, Zheng;Wang, Dongmei;Liu, Chunming
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.178-188
    • /
    • 2017
  • To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of $Fe-9Cr-2W-0.3Y_2O_3$ and $Fe-9Cr-2W-0.3Zr-0.3Y_2O_3$ were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal ${\delta}$-phase $Y_4Zr_3O_{12}$ oxides and body-centered cubic $Y_2O_3$ oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of $Y_4Zr_3O_{12}$ particles is much smaller than that of $Y_2O_3$. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is $1.1{\times}10^{23}/m^3$ with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

The effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened(ODS) steel

  • Jang, Ki-Nam;Kim, Tae-Kyu;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.249-256
    • /
    • 2019
  • The 9Cr-1Mo ferritic-martensitic ODS steel is a promising structural material for the next generation nuclear power plants including fast reactors for application in reactor vessels and nuclear fuel. The ODS steel was cooled down by furnace cooling, air cooling, oil quenching and water quenching, respectively, after normalizing it at $1150^{\circ}C$ for 1 h and then tempering at $780^{\circ}C$ for 1 h. It is found that grain size, a relative portion of ferrite and martensite, martensitic lath configuration, behaviors of carbide precipitates, and hardness of the ODS steel are strongly dependent on a cooling rate. The grain size and martensitic lath width become smaller with the increase in a cooling rate. The carbides were precipitated at the grain boundaries formed between the ferrite and martensite phases and at the martensitic lath interfaces. In addition, the carbide precipitates become smaller and more widely dispersed with the increase in a cooling rate, resulting in that the faster cooling rate generated the higher hardness of the ODS steel.

Assessment of $13{\sim}19%Cr$ Ferritic Oxide Dispersion Strengthened Steels for Fuel Cladding Applications

  • Lee, J.S.;Kim, I.S.;Kimura, A.;Choo, K.N.;Kim, B.G.;Choo, Y.S.;Kang, Y.H.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2004년도 추계학술발표회 발표논문집
    • /
    • pp.911-912
    • /
    • 2004
  • 1. Cathodic hydrogen charging considerably reduced the tensile ductility of ODS steels and a 9Cr-2W RMS. The hydrogen embrittlement of ODS steels was strongly affected by specimen sampling orientation, showing significant embrittlement in the T-direction. This comes from the microstructural anisotropy caused by elongated grains of ODS steels in L-direction. 2. The ODS steels contained a higher concentration of hydrogen than 9Cr-2W RMS at the same cathodic charging condition, and the critical hydrogen concentration required to transition from ductile to brittle fracture was in the range of $10{\sim}12$ wppm, which approximately 10 times larger than that of a 9Cr-2W martensitic steel. 3. The ODS steels showed a typical ductile to brittle transition behavior and it strongly depended on the specimen sampling direction, namely L- and T-direction. In T-direction, the SP-DBTT was about 170 L, irrespective of the ODS materials, and L-direction showed a lower SP-DBTT than that of T-direction.

  • PDF