• Title/Summary/Keyword: 9-Axis Sensor

Search Result 75, Processing Time 0.029 seconds

Estimation of Vehicle Position and Orientation on Magnetic Lane Using 3-axis Magnetic Sensor (3축 자기센서를 이용한 자기차선상의 차량위치 및 방향 추정)

  • Ryoo, Young-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.373-379
    • /
    • 2000
  • In this paper, an estimation system of vehicle position and orientation on magnetic lane, which is a parameter of the steering controller for automated lane following is described. To verify that the magnetic dipole model could be applied to a magnetic unit paved in roadway, the analysis of the model is compared with the data of 3-axis magnetic field measured experimentally. The sensor location could be estimated by analysis of the model based on experimental data. For the magnetic lane model merged magnetic unit, the relation of sensor location and magnetic field is acquired experimentally. The proposed estimation of vehicle position and orientation is adopted to automated lane following by computer simulation.

  • PDF

A Development of 3D video simulation system using GPS (GPS와 9-axis sensor를 이용한 3D 영상 구현 시뮬레이션 시스템)

  • Joo, Sang-Woong;Shim, Kyou-Chul;Kim, Kyeong-Hwan;Zhu, Jiang;Liu, Hao;Liu, Jie;Jeong, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.1021-1023
    • /
    • 2013
  • Currently, aircraft and automobile simulator for training provides a variety of training by making hypothetical situation on a simulator Installed on the ground Currently. And the instructor maximizes the effectiveness of the training by Monitoring training and instructing the required training. When trainees are boarding the aircraft or automobile. The Instructor in the ground is not able to monitoring aircraft, automobile. The assessment of the training is not easy after the end of the training Therefore, it is difficult to provide high quality of education to the students. In this paper, Simulation software is to develop the following. Collecting GPS and real-time information for aircraft, automobile ${\grave{a}}implementing$ 3D simulation. Implementing Current image of the aircraft or automobile in the screen by 3D Real-time monitoring of training situation at the control center utilizing for training saving 3D video files Analysis, evaluation on training After the end of the training.

  • PDF

The Study on the System of Improving the Assembly Tolerance of Cellphone Camera Module (휴대폰 카메라 모듈의 조립공차 개선 시스템에 관한 연구)

  • Ye, In-Soo;Cheong, Seon-Hwan;Choi, Seong-Dae;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.57-63
    • /
    • 2010
  • Tolerance analysis is one of the most important processes to improve the image quality of products. High resolution camera module for mobile phones needs precision assembly technology since the module becomes smaller and thinner. This paper will focus on the unit tolerance and the assembly tolerance which can affect the performance of the module. Lens shading and relative illumination were used to evaluate the optical axis scatter for each component on camera and estimate the assembly yield rate based on the evaluation result. A program was developed to analyze the impact on optical axis by each module, then to optimize the dimensions and tolerance for reducing the scatter of optical axis assembly. Through the simulation, though a rate of relative illumination was declined in where optical axis is displaced $100{\mu}m$ from sensor center, MTF performance is not influenced by increasing in optical axis displacement. It was seen that assembly yield was improved in result of simulation after correcting optical axis tolerance.

Recognition of Basic Motions for Figure Skating using AHRS (AHRS를 이용한 피겨스케이팅 기본 동작 인식)

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.89-96
    • /
    • 2015
  • IT is widely used for biomechanics and AHRS sensor also be highlighted with small sized characteristics and price competitiveness in the field of motion measurement and analysis of sports. In this paper, we attach the AHRS to the figure skate shoes to measure the motion data like spin, forward/backward, jump, in/out edge and toe movement. In order to reduce the measurement error, we have adopted the sensors equipped with Madgwick complementary filtering and also use Euler angle to quaternion conversion to reduce the Gimbal-lock effect. We test and experiment the accuracy and execution time of the pattern recognition algorithms like PCA, ICA, LDA, SVM to show the recognition possibility of it on the basic motions of figure skating from the 9-axis trajectory information which is gathered from AHRS sensor. From the result, PCA, ICA have low accuracy, but LDA, SVM have good accuracy to use for recognition of basic motions of figure skating.

Measurement of the Shape of the Cold Neutron Source Vertical Hole by Ultrasonic Wave Sensor (초음파센서를 이용한 냉중성자원 수직공 형상측정)

  • Park, Guk-Nam;Choe, Chang-Ung;Sim, Cheol-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2167-2173
    • /
    • 2000
  • The HANARO (High-flux Advanced Neutron Application Reactor) has operated since 1995. The Cold Neutron(CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure the exact size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersion ultrasonic technique is considered as the best method to measure the thickness and the diameter. The 4 axis manipulator of the 2 channel of a sensor module was fabricated. The transducer of 10 MHz results in 0.03 nun of resolution. The inside diameter and thickness for 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results showed that the thickness is in the range of 13-6.7 mm and inside diameter is in the range of o 156-165. These data will be a good reference in the design of a cold neutron source facility.

Fabrication of MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si Substrate for Pyroelectric IR Sensor (초전형 적외선 센서를 위한 MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si 기판 제작)

  • Kim, Sung-Woo;Sung, Se-Kyoung;Ryu, Jee-Youl;Choi, Woo-Chang;Choi, Hyek-Hwan;Lee, Myoung-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.90-95
    • /
    • 2000
  • The substrate for pyroelectric IR sensor which has orientation similar to MgO single crystal was fabricated by depositing the MgO thin film on $Si_3N_4/SiO_2/Si_3N_4$/Si. The MgO thin film was deposited by RF magnetron sputtering. The c-axis orientation of PLT thin film deposited on Pt/MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si substrate was investigated. The MgO thin film deposited at $500^{\circ}C$ at a gas pressure of 30 mTorr with RF power of 160 W exhibited a good a-axis orientation. The PLT thin films deposited on these substrates also exhibited c-axis orientation similar to the PLT thin films deposited on MgO single crystal substrate.

  • PDF

Analysis and Compensation of Current Measurement Errors in a Doubly Fed Induction Generator

  • Son, Yung-Deug;Im, Won-Sang;Park, Han-Seok;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.532-540
    • /
    • 2014
  • It is necessary to measure the current of rotor for controlling the active and reactive power generated by the stator side of the doubly fed induction generator (DFIG) system. There are offset and scaling errors in the current measurement. The offset and scaling errors cause one and two times current ripples of slip frequency in the synchronous reference frame of vector control, respectively. This paper proposes a compensation method to reduce their ripples. The stator current is variable according to the wind force but the rotor current is almost constant. Therefore input of the rotor current is more useful for a compensation method. The proposed method adopts the synchronous d-axis current of the rotor as the input signal for compensation. The ripples of the measurement errors can be calculated by integrating the synchronous d-axis stator current. The calculated errors are added to the reference current of rotor as input of the current regulator, then the ripples are reduced. Experimental results show the effectiveness of the proposed method.

Technique of Measuring Wind Speed and Direction by Using a Roll-rotating Three-Axis Ultrasonic Anemometer (II) (롤 회전하는 3축 초음파 풍속계를 활용한 풍향 풍속 측정기법(II))

  • Chang, Byeong Hee;Lee, Seunghoon;Kim, Yang won
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • In a previous study, a technique for measuring wind speed and direction by using a roll-rotating three-axis ultrasonic anemometer was proposed and verified by wind tunnel tests. In the tests, instead of a roll sensor, roll angle was trimmed to make no up flow in the transformed wind speeds. Verification was done in point of the residual error of the rotation effect treatment. In this study, roll angle was measured from the roll motor encoder and the transformed wind speed and direction on the test section axis were compared with the ones provided to the test section. As a result, up to yaw $20^{\circ}$ at a wind speed of 12 m/sec or over, the RMS error of wind speed was within the double of the ultrasonic anemometer error. But at yaw $30^{\circ}$, it was over the double of the ultrasonic anemometer error. Regardless of wind speed, at yaw $20^{\circ}$ and $30^{\circ}$, the direction error was within the double of the ultrasonic anemometer error. But at yaw $10^{\circ}$ or less, it was within the error of the ultrasonic anemometer itself. This is a very favorable characteristic to be used for wind turbine yaw control.

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds (회전속도에 따른 동역학적 변화를 고려한 반경방향 능동 자기베어링 시스템의 제어기 설계 및 검증)

  • Jeong, Jin Hong;Yoo, Seong Yeol;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.925-932
    • /
    • 2014
  • If a rotor possesses a high gyroscopic coupling or the running speed is high, the dynamical changes in the rotor become prominent. When active magnetic bearings are used to support such rotors, it is necessary for the bearing controller to take these dynamical changes into consideration. Independent-axis controllers, which are the most commonly used, modulate the bearing force solely based on the sensor output of the same axis. However, this type of controller has difficulties in overcoming the dynamical changes. On the other hand, mixed-axis controllers transform the sensor output into components corresponding to the vibrational modes. A separate controller can then be designed for each vibrational mode. In this way, the controller can be designed based on the dynamics of the rotor. In this paper, we describe a design process for a mixed-axis controller that uses a detailed mathematical model of the system. The performance of the controller is evaluated based on the ISO sensitivity requirements and unbalance response, while considering the change in the system dynamics due to the running speed.