• Title/Summary/Keyword: 802.11 Wireless LANs

Search Result 94, Processing Time 0.023 seconds

Optimal Frame Aggregation Level for Connectivity-Based Multipolling Protocol in IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜에서 연결정보 기반의 멀티폴링 프로토콜을 위한 최적의 프레임 애그리게이션 레벨)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.5
    • /
    • pp.520-525
    • /
    • 2014
  • When the PCF (Point Coordinated Function) MAC protocol is combined with the frame aggregation method to enhance the MAC performance in IEEE 802.11 wireless LANs, the formulae for the optimal frame aggregation level for best PCF MAC performance were derived in our previous study. We extend the formulae for the PCF protocol to derive the optimal frame aggregation level for the connectivity-based multipolling MAC protocol in IEEE 802.11 wireless LANs. By simulations, we compare the performances of IEEE 802.11 wireless LANs with the optimal and random frame aggregation levels. Compared with the random frame aggregation level, the optimal frame aggregation level significantly improves the performance of IEEE 802.11 wireless LANs.

MAC Performance Improvement by Selective Use of DCF and PCF Protocols for IEEE 802.11 Wireless LANs (무선랜에서 망 상태에 따른 DCF와 PCF 프로토콜의 선택적인 사용을 통한 MAC 성능 향상)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.89-95
    • /
    • 2011
  • The distributed coordination function (DCF) and point coordination function (PCF) protocols are the basic MAC protocols for legacy IEEE 802.11, IEEE 802.11a, IEEE 802.11b, IEEE 802.11e, IEEE 802.11g and IEEE 802.11n wireless LANs. When the DCF protocol is used for the various versions of IEEE 802.11 wireless LANs, the MAC performance seriously degrades due to the collisions among the stations (STAs) as more and more STAs attempt to transmit their data frames. On the other hand, the PCF MAC performance becomes poor when many STAs exist in IEEE 802.11 wireless LANs, however, only small number of STAs actually attempt to transmit their data frames. In this paper, we propose the algorithm for improving the MAC performance by selectively using the DCF and PCF protocols according to the state of IEEE 802.11 wireless LANs. Numerical examples are presented to show the MAC performance improvement by the selective use of the DCF and PCF protocols according to the network state.

Dynamic Contention Window Control Algorithm Using Genetic Algorithm for IEEE 802.11 Wireless LAN Systems for Logistics Information Systems (물류 정보시스템을 위한 IEEE 802.11 무선랜 시스템에서 유전자 알고리듬을 이용한 Dynamic Contention Window 제어 알고리듬)

  • Lee, Sang-Heon;Choi, Woo-Yong;Lee, Sang-Wan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.330-340
    • /
    • 2007
  • IEEE 802.11 wireless LANs employ the backoff algorithm to avoid contentions among STAs when two or more STAs attempt to transmit their data frames simultaneously. The MAC efficiency can be improved if the CW values are adaptively changed according to the channel state of IEEE 802.11 wireless LANs. In this paper, we propose a dynamic contention window control algorithm using the genetic algorithm to improve the MAC throughput of IEEE 802.11 wireless LANs.

  • PDF

Efficiency of Transmission Method for RFID Logistics Information by Data Aggregation in IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜 시스템에서 데이터 Aggregation을 통한 RFID 물류정보 전송방법의 효율성 분석)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.119-128
    • /
    • 2009
  • In this paper, we analyze the effect of the data aggregation level on the MAC performance when RFID (Radio Frequency Identification) logistics data, which can be aggregated at RFID readers to reduce the transmission overhead, are transmitted in IEEE 802.11 wireless LANs. For various data aggregation levels, the throughputs and latencies of the DCF (Distributed Coordination Function) and PCF (Point Coordination Function) MAC protocols are analyzed by computer simulation. From the simulation analysis, we propose the appropriate input traffic load for real-time RFID logistics data transmitted in IEEE 802.11 wireless LANs.

Hybrid MAC Protocol for Improving Performance of IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜의 성능 향상을 위한 하이브리드 MAC 프로토콜)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.2
    • /
    • pp.220-224
    • /
    • 2015
  • The DCF (Dcistributed Coordination Function) and PCF (Point Coordination Function) are the basic MAC (Medium Access Control) protocols of IEEE 802.11 wireless LANs. According to the DCF, each node performs the exponential backoff algorithm before the transmission of its data frame. Each node doubles the backoff waiting time before the transmission of its data frame whenever it detects the transmission collision with other nodes. Therefore, as the number of the active nodes having the data frames to transmit increases, the overall MAC performance of the DCF decreases. On the other hand, according to the PCF, each node is granted the transmission opportunity by which the PCF transmission is possible without the collision with other nodes. Therefore, as the number of the active nodes increases, the MAC performance of the PCF increases, In this paper, considering the tradeoff of MAC performance between the DCF and PCF, a hybrid MAC protocol is proposed to enhance the performance of IEEE 802.11 wireless LANs.

Performance Enhancement of CSMA/CA MAC DCF Protocol for IEEE 802.11a Wireless LANs (IEEE 802.11a 무선 LAN에서 CSMA/CA MAC DCF 프로토콜의 성능 향상)

  • Moon, Il-Young;Roh, Jae-Sung;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.65-72
    • /
    • 2004
  • A basic access method using for IEEE 802.11a wireless LANs is the DCF method that is based on the CSMA/CA. But, Since IEEE 802.11 MAC layer uses original backoff algorithm (Exponential backoff method), when collision occurs, the size of contention windows increases the double size. Hence, packet transmission delay time increases and efficiency is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs using a proposed enhanced backoff algorithm. From the results, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between TCP packet size and total message transmission time, allowing for an inference of the optimal packet size in the TCP layer.

  • PDF

A Study on CSMA/CA for IEEE 802.11 WLAN Environment

  • Moon Il-Young;Cho Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.71-74
    • /
    • 2006
  • A basic access method about IEEE 802.11 MAC layer protocol using IEEE 802.11 wireless LANs is the DCF thatis based on the CSMA/CA. But, cause of IEEE 802.11 MAC layer uses original backoff algorithm (exponential backoff method), when collision occurred, the size of contention windows increases the double size Also, a time of packet transmission delay increases and efficienty is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs a proposed enhanced backoff algorithm. It is considered the transmission time of transmission control protocol (TCP) packet on the orthogonal frequency division multiplexing (OFDM) in additive white gaussian noise (A WGN) and Rician fading channel. From the results, a proposed enhanced backoff algorithm produces a better performance improvement than an original backoff in wireless LAN environment. Also, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between packet size and the transmission time, allowing for an inference of the optimal packet size in the TCP layer.

A MAC Protocol Mechanism for Mobile IP over Wireless LANs

  • Moon, Il-Young;Roh, Jae-Sung;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.194-198
    • /
    • 2003
  • Recently, the use of TCP/IP protocols over wireless LANs poses significant problems. In this paper, we have analyzed transmission control protocol (TCP) packet transmission time for mobile IP over wireless local area networks (LANs) using a proposed a new random backoff scheme. We call it as a proxy backoff scheme. It is considered the transmission time of TCP packet on the orthogonal frequency division multiplexing (OFDM) in additive white gaussian noise (AWGN) channel. From the results, a proposed proxy backoff scheme produces a better performance than an original random backoff in mobile IP over wireless LANs environment. Also, in OFDM/quadrature phase shift keying (QPSK) medium access control (MAC), we have obtained that the transmission time in wireless channel decreases as the TCP packet size increases.

A new MAC protocol to improve a performance in IEEE 802.11 wireless LANs (IEEE 802.11 무선 랜의 성능 향상을 위한 새로운 MAC프로토콜)

  • Hwang, Gyung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.759-764
    • /
    • 2009
  • A new backoff scheme for infrastructure mode in IEEE 802.11 wireless LANs is proposed to improve a performance. Each station generates a unique backoff number using total number of stations, fairness parameter included in beacon frame and an user's ID that is assigned by AP. The station sends a packet after its own backoff number of idle slots, which makes a collision free access among stations within AP's coverage. The proposed method shows better performance in the view of channel utilization and packet delay than an original IEEE 802.11 CSMA/CA backoff scheme.

Dynamic Contention Window Control Algorithm Using Genetic Algorithm in IEEE 802.11 Wireless LAN Systems for Logistics Information Systems (물류 정보시스템을 위한 IEEE 802.11 무선랜 시스템에서 유전자 알고리듬을 이용한 Dynamic Contention Window 제어 알고리듬)

  • Lee, Sang-Heon;Choi, Woo-Yong;Lee, Sang-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.10-19
    • /
    • 2009
  • Wireless LAN systems have been widely implemented for supporting the wireless internet services especially in the hotspot areas such as hospitals, homes, conference rooms, and so on. Compared with wired LAN systems, wireless LAN systems have the advantages of the users' mobility support and low implementation and maintenance costs. IEEE 802.11 wireless LAN systems employ the backoff algorithm to avoid contentions among STAs when two or more STAs attempt to transmit their data frames simultaneously. The MAC efficiency can be improved if the CW values are adaptively changed according to the channel state of IEEE 802.11 wireless LANs. In this paper, a dynamic contention window control algorithm is proposed using the genetic algorithm to improve the MAC throughput of IEEE 802.11 wireless LANs.