• Title/Summary/Keyword: 802.11

Search Result 1,741, Processing Time 0.022 seconds

Asymmetric RTS/CTS for Exposed Node Reduction in IEEE 802.11 Ad Hoc Networks

  • Matoba, Akihisa;Hanada, Masaki;Kanemitsu, Hidehiro;Kim, Moo Wan
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.107-118
    • /
    • 2014
  • One interesting problem regarding wireless local area network (WLAN) ad-hoc networks is the effective mitigation of hidden nodes. The WLAN standard IEEE 802.11 provides request to send/clear to send (RTS/CTS) as mitigation for the hidden node problem; however, this causes the exposed node problem. The first 802.11 standard provided only two transmission rates, 1 and 2 Mbps, and control frames, such as RTS/CTS assumed to be sent at 1 Mbps. The 802.11 standard has been enhanced several times since then and now it supports multi-rate transmission up to 65 Mbps in the currently popular 802.11n (20 MHz channel, single stream with long guard interval). As a result, the difference in transmission rates and coverages between the data frame and control frame can be very large. However adjusting the RTS/CTS transmission rate to optimize network throughput has not been well investigated. In this paper, we propose a method to decrease the number of exposed nodes by increasing the RTS transmission rate to decrease RTS coverage. Our proposed method, Asymmetric Range by Multi-Rate Control (ARMRC), can decrease or even completely eliminate exposed nodes and improve the entire network throughput. Experimental results by simulation show that the network throughput in the proposed method is higher by 20% to 50% under certain conditions, and the proposed method is found to be effective in equalizing dispersion of throughput among nodes.

A Primary Channel Selection Scheme for Wideband WLAN V2X Communication (무선랜 기반 광대역 V2X 통신에서의 채널 접근 동작을 위한 주 채널 설정 기법)

  • Hong, Hanseul;Kim, Ronny Yongho;Ahn, Woojin
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.589-596
    • /
    • 2019
  • With the proliferation of intelligent transportation system (ITS) with dedicated short-range communication (DSRC) deployment, there are various applications requiring different throughput and reliability performance. To meet the enhanced throughput requirements in newly generated applications, IEEE 802.11bd is proposed to standardize for support of enhanced throughput and latency, preserving the fairness with previously deployed WLAN V2X devices. One of the main features of IEEE 802.11 bd is 20 MHz transmission to support the high data rate. In this paper, the primary channel selection method is proposed to guarantee the fairness with frame transmissions with 10 MHz bandwith including communications in WLAN V2X devices deployed with IEEE 802.11p. Simulation shows that the proposed channel access method for 20 MHz transmission with primary selection preserves the fairness without the change of channel access method in wide-band transmission.

An On-demand Station Location Management scheme using 6-address structure of IEEE 802.11s (IEEE 802.11s 6-Address 구조를 이용한 On-demand 방식 단말 위치 관리기법)

  • Jang, Jeong-Hun;Kong, Jong-Min;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.829-836
    • /
    • 2013
  • Wireless mesh networks(WMNs) are wireless backbone networks technology consisting of a multi-hop routers. Location management is essential to provide a service to the terminal in WMNs. IEEE 802.11s standards have two basic location management scheme for location management - the proxy registration procedure and the associated station discovery protocol. These basic schemes, however, suffer from serious drawbacks including redundancy control message, ineffective location information maintenance, additional delay time. This paper propose an on-demand station location management scheme using 6-address structure of IEEE 802.11s. Through analysis and experimental evaluation on simulation, we show that proposal scheme reduce control message and forwarding delay time.

TAS: TCP-Aware Sub-layer over IEEE 802.11-based wireless LANs (IEEE 802.11 기반 무선랜에서 TCP 인진서브 계층 TAS)

  • Choi, Nak-Jung;Jung, Ha-Kyung;Ryu, Ji-Ho;Seok, Yong-Ho;Choi, Yang-Hee;Kwon, Tae-Kyoung
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.5
    • /
    • pp.355-368
    • /
    • 2006
  • This paper introduces a new split-TCP approach for improving TCP performance over IEEE 802.11-based wireless LANs. TCP over wireless LANs differently from wired networks is not aggressive, which is a fundamental reason for poor performance. Therefore, we propose TAS (TCP-Aware Sub-layer) to migigate this problem. Our scheme extends the split-connection approach that divides a connection into two different connections at a split point such as an access point (AP). Using TAS, a wireless node emulates TCP ACK packets using MAC ACK frames, instead of receiving real TCP ACK packets. We compared TAS with both normal TCP and I-TCP (Indirect TCP) by NS2 simulation. Results show that TAS achieves higher throughput, more fair resource allocation and, in power-saving mode, shorter delays.

Busy-tone PHY Module with IEEE 802.11 Design and Implementation in NS-2 (NS-2에서 IEEE 802.11의 Busy-tone PHY 모듈 설계 및 구현)

  • Yoo, Dae-Hun;Choi, Woong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.189-197
    • /
    • 2008
  • ENS-2 simulator is the most widely-used simulator in the research of wired/wireless communication. Since an IEEE 802.11 module has been implemented in NS-2. much research using this module has been done for various MAC layer functions. The most important problem in terms of performance is the hidden terminal problem. To solve this problem, the solutions using a busy-tone such as BTMA, DBTMA, etc. have been proposed. In order to be able to use a busy-tone, channels using the frequency bandwidth except the frequency bandwidth of the data channel is required for the collision prevention, and a MAC layer has to be able to menage such multiple channels. In this research, we implement a module that can use a busy-tone in NS-2, implement a modified RI-BTMA by applying the implemented module, and verify its performance.

  • PDF

Load-based Dynamic Backoff Algorithm in Contention-based Wireless Shared Medium (단일 경쟁 매체에서의 새로운 로드 기반 동적 매체 접속 제어 백오프 알고리즘)

  • Seo Chang-Keun;Wang Weidong;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6B
    • /
    • pp.406-415
    • /
    • 2005
  • The standards which use shared medium like IEEE 802.11 wireless LAN have transmission opportunity by contention in contention period. If there are collisions in contention period, medium access control protocol may solve problem by using backoff algorithm. Backoff algorithm is important part in medium access control, but legacy backoff method which is used under IEEE 802.11 standards is not adjusted when load is heavy because of increasing collisions. In this paper, we propose a new load-based dynamic backoff algorithm in contention-based wireless shared medium to improve throughput of medium and to reduce the number of collisions. Proposed backoff algorithm can increase the network utilization about $20\%$ higher than that of binary exponential backoff algorithm.

A Priority-based MAC Protocol to Support QoS in Ad-hoc Networks (애드 혹 네트워크 QoS 지원을 위한 우선순위 기반 MAC 프로토콜)

  • Wang, Weidong;Seo, Chang-Keun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.80-89
    • /
    • 2005
  • In IEEE 802.11 and 802.11e for ad hoc networks, DCF and EDCA use a contention-based protocol called CSMA/CA, which is simple to implement efficient when the system is light loaded. But the performance of CSMA/CA decreases dramatically when the system load is heavy because of increasing collisions. In PCF and HCF modes, stations are controlled by a base station by polling, no collision ever occurs. However, when the system load is light, the performance is poor because few stations have data to transfer. More important, PCF and HCF can not be used in the ad hoc networks. In this paper, we address a priority-based distributed polling mechanism (PDPM) that implements polling scheme into DCF or EDCA modes for ad hoc networks by adding a polling approach before every contention-based procedure. PDPM takes the advantages of polling mechanism that avoids most of collisions in a high load condition. At the same time, it also keeps the contention-based mechanism for a light loaded condition. PDPM provides quality of service (QoS) with fewer collisions and higher throughput compared with IEEE 802.11e.

Access Point Selection Algorithm for Densely Deployed IEEE 802.11 WLANs (IEEE 802.11 무선랜 환경에서의 AP 선택 알고리즘)

  • Kim, Gyul;Lee, SuKyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.707-713
    • /
    • 2016
  • In the IEEE 802.11 Wireless LAN environment, the common Access Point (AP) selection of the existing terminal is based on signal strength. However, the signal strength-based AP selection method does not ensure an optimal data rate. Recently, several AP selection methods to solve this problem have been suggested. However, when we select AP, these have a latency problem and don't consider dense environments of AP. In this paper, we confirm the problem of the conventional AP selection about the signal strength and the throughput through the actual measurement, and propose algorithm that selects AP by scoring link speed and wireless round trip time to compensate the problem. Furthermore, the proposed AP selection algorithm through the actual experiment proves the improved performance as compared with the existing methods.

A Buffer Management Scheme for Multi-hop Traffic in IEEE 802.11 based Mesh Networks (IEEE 802.11 기반 메쉬 네트워크에서 다중 홉 트래픽을 위한 버퍼 관리 방식)

  • Jang, Kil-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.455-462
    • /
    • 2009
  • In this paper, we propose a buffer management scheme for decreasing the packet loss due to buffer overflow and improving the packet fairness between nodes in IEEE 802.11 based multi-hop mesh networks. In the proposed scheme, each mesh router that is an intermediate node receives fairly packet sent from neighboring mesh routers and mobile nodes, and it improves the reception ratio of multi-hop traffic of neighboring mesh routers. Therefore, the proposed scheme can reduce transmission delay and energy consumption. In order to improving the packet loss and the packet fairness, the proposed scheme uses the modified RTS/CTS under the IEEE 802.11 MAC protocol and reduces the packet loss by recognizing the packet size to send to the destination in advance. By using the simulation, we evaluated the proposed scheme in terms of the packet loss ratio and the number of received packet in each mesh router, and compare it to a traditional scheme.

Design and Comparison of the Pipelined IFFT/FFT modules for IEEE 802.11a OFDM System (IEEE 802.11a OFDM System을 위한 파이프라인 구조 IFFT/FFT 모듈의 설계와 비교)

  • 이창훈;김주현;강봉순
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.570-576
    • /
    • 2004
  • In this paper, we design the IFFT/FFT (Inverse fast Fourier Transform/Fast Fourier Transform) modules for IEEE 802.11a-1999, which is a standard of the High-speed Wireless LAN using the OFDM (Orthogonal Frequency Division Multiplexing). The designed IFFT/FFT is the 64-point FFT to be compatible with IEEE 802.11a and the pipelined architecture which needs neither serial-to-parallel nor parallel-to-serial converter. We compare four types of IFFT/FFT modules for the hardware complexity and operation : R22SDF (Radix-2 Single-path Delay feedback), the R2SDF (Radix-2 Single-path Delay feedback), R2SDF (Radix-4 Single-path Delay Feedback), and R4SDC (Radix-4 Single-path Delay Commutator). In order to minimize the error, we design the IFFT/FFT module to operate with additional decimal parts after butterfly operation. In case of the R22SDF, the IFFT/FFT module has 44,747 gate counts excluding RAMs and the minimized error rate as compared with other types. And we know that the R22SDF has a small hardware structure as compared with other types.