• Title/Summary/Keyword: 72-h $EC_{50}$

Search Result 36, Processing Time 0.019 seconds

Initial Ecological Risk Assessment of 1,2-Benzisothiazol-3-one in Environment (환경 중 1,2-Benzisothiazol-3-one에 대한 초기 생태위해성 평가)

  • Han, Hye-Jin;Kim, EunJu;Yoo, SunKyoung;Ro, Hi-Young;Baek, Yong-Wook;Shim, IlSeob;Eom, Ig-Chun;Kim, Hyun-Mi;Kim, PilJe;Choi, Kyunghee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • In this study, physico-chemical properties and environmental fate were investigated and ecotoxicity tests using fish, daphnia and algae were conducted for an initial ecological risk assessment of 1,2-Benzisothiazol-3-one. Due to low volatility of the test substance under environmental conditions, it is likely to distributed in soil and water environment. The compound has low adsorption in the soil, with low bioconcentration potential. Acute toxicity results showed that 96 h-$LC_{50}$ for Oryzias laties was 4.7 mg/L (measured) and 48h-$EC_{50}$ for Daphnia magna was 3.3 mg/L (measured). In a growth inhibition test with Pseudokirchneriella subcapitata, 72 h-$EC_{50}$ was 0.456 mg/L (growth rate, nominal) and 0.262 mg/L (yield, nominal). Using the acute toxicity value of algae, predicted no-effect concentration (PNEC) in the aquatic environment was determined to be 2.62 ${\mu}g/L$ using an factor of 100. According to globally harmonized system (GHS), the compound was categorized as aquatic acute 1 for algae, while it was categorized as aquatic acute 2 for fish and daphnia. This screening assessment suggests that the test substance may pose ecological risks in the aquatic environment.

The Study on the Marine Eco-toxicity and Ecological Risk of Treated Discharge Water from Ballast Water Management System Using Electrolysis (전기분해원리를 이용한 선박평형수관리장치의 배출수에 대한 해양생태독성 및 해양환경위해성에 관한 연구)

  • Shon, M.B.;Son, M.H.;Lee, J.;Son, Y.J.;Lee, G.H.;Moon, C.H.;Kim, Y.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.88-101
    • /
    • 2013
  • The International Convention for the Control and Management of Ship's Ballast Water and Sediments was adopted at 2004 and then various BWMS (ballast water management system) have been developed. In this study, WET (whole effluent toxicity) test with algae (diatom) Skeletonema costatum as primary producer, invertebrate (rotifera) Brachionus plicatilis as 1st consumer and fish (olive flounder) Paralichthys olivaceus as predator, chemical analysis and ERA (environmental risk assessment) were conducted to assess the unacceptable effect on marine ecosystem by emitting the discharge water treated with AquaStar$^{TM}$ BWMS using electrolysis as main treatment equipment for removing the marine organisms in the ship's ballast water. The most sensitive test organism on discharge water treated with AquaStar$^{TM}$ BWMS was S. costatum that gave the NOEC value of 25.00%, LOEC value of 50.00% and 72hr-$EC_{50}$ value of 69.97% from WET test result for 20 psu salinity treated discharge water. NOEC and LOEC value of B. plicatilis and P. olivaceus exposed at 20 psu salinity treated discharge water were 50.00% and 100.00%, respectively. In the chemical analysis results, total number of substances produced by AquaStar$^{TM}$ BWMS was 18 which were bromate, 7 volatile halogenated organic compounds, 7 halogenated acetic acids, 3 halogenated acetonitriles and chloropicrin. Eighteen substances did not consider as persistence and bioaccumulative chemicals. Uncertainty of toxic property of 18 substances was high. PECs of 18 substances calculated by MAMPEC model were ranged from $4.58{\times}10^{-4}$ to $4.87{\mu}g\;L^{-1}$, PNECs of them were ranged from $1.6{\times}10^{-2}$ to $3.2{\times}10^2{\mu}g\;L^{-1}$. And, the PEC/PNEC ratio of 18 substances did not exceed 1. Therefore, ERA for produced substances indicate that the discharge water treated with AquaStar$^{TM}$ BWMS does not pose unacceptable effect on marine life. And $EC_{50}$ value of S. costatum on discharge water treated by BWMS using the electrolysis had positive correlation with initial TRO concentration, concentration and kind & level of HAAs.

Effects of Temporary pH Reductions of Solution on Tuberization of Potato(Solanum tuberosum L.) in Hydroponics (배양액의 pH저하 처리에 의한 감자소괴경 형성 촉진)

  • 박용봉;금기택
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.30-35
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of temporary pH reductions on tuberization of ‘Dejima’potato in aeroponics. The pH and EC of nutrient solution were adjusted to 6.0∼6.5 and 1.2mS/cm, respectively. On 35th day after planting, plants were subjected to pH 3.0, 4.0, 5.0 and 6.5 for 10hrs. After 5 days mini-tuberization was shown in pH 3.0 treatment and was significantly increased up to 20 days. Temporary low pH treatment resulted in the increase of stolen formation and of tuber dry weight. Number of mini-tubers per plant on 90th-day after planting was 72.1, 69.8, 65.2, and 60.3 in pH 3.0, 4.0, 5.0 and 6.5 respectively.

  • PDF

Purification and Characterization of a Pectate Lyase from Bacillus sp. HSA-925 (Bacillus sp. HSA-925 Pectate Lyase의 정체 및 특성)

  • Park, Sung-Hee;Kim, Tae-Ho;Kim, Jong-Guk;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.65-72
    • /
    • 1994
  • Purification and characterization of pectate lyase from Bacillus sp HSA-925. Bacillus sp. HSA-925 isolated from soil produced constitutively an extracellular pectate lyase when cultivated in LB broth. The pectate lyase(EC 4.2.2.2) was purified from the cuylture broth by preciptation with ammonium sulfate, followed by column chromatography on CM-cellulose C-50 and repeated gel filtration on Sephadex G-75G. The enzyme had a molecular weight of 32-33 kDa. The activity was mazimum at pH 9.5 AND 45$\CIRC $C. The enzume activity was stable at 55$\circ $C for 15 min and between pH7-12. The activation energy, Km and V$_{max}$ for the pectate lyase were 5.8779 kcal/mol, 6.33$\times $10$^{-2}$ mol/ml and 2.09$\times $10$^{2}$ $\mu $mol/min respectively. The enzyme was activated by Ca$^{2+}$, Cu$^{2+}$ and inhibited by Li$^{+}$, Hg$^{2+}$, EDTA.

  • PDF

Production of Concentrated Blueberry Vinegar Using Blueberry Juice and Its Antioxidant and Antimicrobial Activities (블루베리 농축식초 제조 및 이들의 항산화 및 항균 활성)

  • Oh, Hyeonhwa;Jang, Sowon;Jun, Hyun-Il;Jeong, Do-Youn;Kim, Young-Soo;Song, Geun-Seoup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.695-702
    • /
    • 2017
  • This study was carried out to investigate the effects of seed vinegar on antioxidant activity and antimicrobial activities of concentrated blueberry vinegar (CBV). Of the nine strains of yeast and six strains of acetic acid bacteria provided by the Microbial Institute for Fermentation Industry, each strain of yeast (Saccharomyces cerevisiae SRCM 100610, showing the highest ethanol content) and acetic acid bacteria (Acetobacter pasteurianus SRCM 101342, showing the highest total acidity) was selected for production of CBVs. Sugar content, pH, total acidity, total phenolic content (TPC), and browning intensity (280 nm and 420 nm) in CBVs using concentrated blueberry juice were $11.05{\sim}12.70^{\circ}Brix$, 2.63~2.98, 1.65~5.72%, 3.03~4.24 mg/mL, 0.95~1.50, and 0.11~0.20, respectively. Sugar content and total acidity of CBVs increased upon addition of seed vinegar, whereas pH, TPC, and browning intensity decreased. Of all CBVs with various additions of seed vinegar, the control showed the lowest $EC_{50}$ values in DPPH radical scavenging assay, ABTS radical scavenging assay, and reducing power (23.80, 19.48, and 79.21 dilution factor, respectively), whereas the 40% seed vinegar group showed the highest clear zone diameter values for Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus (4.31, 4.59, 5.81, and 3.97, respectively). Antioxidant activities of CBVs were closely correlated with their TPC, browning intensity at 280 nm, pH, and total acidity values, showing correlation determination coefficient ($R^2$) values higher 0.82. However, antimicrobial activities of CBVs were closely correlated with their pH and total acidity values, showing higher $R^2$ values more than 0.92. These results suggest that CBVs using concentrated blueberry juice, S. cerevisiae SRCM 100610, and A. pasteurianus SRCM 101342 may be useful as potentially functional foods for enhancing health.

Sediment Toxicity Assessment of Pesticides using Chironomus riparius Acute and Chronic Effect (Chironomus riparius의 급성 및 만성영향에 의한 농약의 퇴적토 독성평가)

  • Park, Jung-eun;Hwang, Eun-Jin;Chang, Hee-Ra
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.80-86
    • /
    • 2017
  • BACKGROUND: Pesticides is exposed in an aquatic environment and effected to benthic animals. Especially, sediment-associated pesticides is required for determination of sediment toxicity on aquatic organisms. This study was conducted to evaluate the impact of six pesticides (chlorfluazuron, difenoconazole, dithianon, flufenoxuron, flutianil, pendimethalin) on Chironomus riparius in aquatic ecosystems. METHODS AND RESULTS: Chlorfluazuron, difenoconazole, dithianon, flufenoxuron, flutianil and pendimethalin were used as a model compounds, which have a sediment-associated potential ($K_{oc}$>3). Acute and chronic toxicity tests on Chironomus riparius were performed at six concentrations of each pesticide with four replicates of each based on OECD test guideline 235 and 218. The calculated 48-h $EC_{50}$ values of chlorfluazuron, flutianil, pendimethalin, difenoconazole, dithianon and flufenoxuron were 6.72, 2.55, 2.27, 0.77, 0.30 and 0.11 mg/L, respectively. Flufenoxuron was the lowest 48-h $EC_{50}$ value in this study. The No Observed Effective Concentration (NOEC) and the Lowest Observed Effect Concentration (LOEC) of flufenoxuron for Chironomus riparius in 28-days test were 30 and $60{\mu}g/kg$, respectively. CONCLUSION: Pesticides of the sediment-associated have the potential effect for Chironomus riparius in aquatic ecosystems. Therefore, sediment toxicity assessment of these pesticides should be further investigated to evaluate the impact to benthic organisms.

Effect of Copper on Marine Microalga Tetraselmis suecica and its Influence on Intra- and Extracellular Iron and Zinc Content

  • Kumar, K. Suresh;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.16-28
    • /
    • 2017
  • In an aquatic environment, toxicity of metals to organisms depends on external factors (type of metal, exposure concentration and duration, environmental parameters, and water quality) and intracellular processes(metal-binding sites and detoxification). Toxicity of copper(Cu) on the marine microalga Tetraselmis suecica was investigated in this study. Dose-dependent (Cu concentration dependent) inhibition of growth and cell division, as well as, variation of intra- and extra-cellular Cu, Fe and Zn content was observed. T. suecica was sensitive to Cu; the 96 h $EC_{50}$ (concentration to inhibit growth-rate by 50%) of growth rate (${\mu}$) ($21.73{\mu}M\;L^{-1}$), cell division $day^{-1}$ ($18.39{\mu}M\;L^{-1}$), and cells $mL^{-1}$ ($13.25{\mu}M\;L^{-1}$) demonstrate the toxicity of Cu on this microalga. High intra-($19.86Pg\;cell^{-1}$) and extra-cellular($54.73Pg\;cell^{-1}$) Cu concentrations were recorded, on exposure to 24.3 and $72.9{\mu}M\;L^{-1}$ of Cu.

Biocide sodium hypochlorite decreases pigment production and induces oxidative damage in the harmful dinoflagellate Cochlodinium polykrikoides

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.311-319
    • /
    • 2014
  • The biocide sodium hypochlorite (NaOCl) is widely used for controlling algal growth, and this application can be extended to marine environments as well. This study evaluates the biocidal efficiency and cellular toxicity of NaOCl on the harmful dinoflagellate Cochlodinium polykrikoides, with emphasis on pigment production and antioxidant enzyme activity. The test organism showed dose-dependent decrease in growth rate on exposure to NaOCl, and the 72 h $EC_{50}$ was measured to be $0.584mg\;L^{-1}$. NaOCl significantly decreased pigment levels and chlorophyll autofluorescence intensity, indicating possible detrimental effects on the photosystem of C. polykrikoides. Moreover, it significantly increased the activities of antioxidant enzymes, suggesting the production of reactive oxygen species in the cells. These data indicate that NaOCl exerted deleterious effects on the photosynthetic machinery and induced oxidative damage in the dinoflagellate and this biocide could be effectively used for the control of algal blooms.

Effect of Heavy Metals on the Survival and Population Growth Rates of Marine Rotifer, Brachionus plicatilis (중금속(Cd, Cu, Zn) 농도구배에 따른 윤충류 Brachionus plicatilis의 생존 및 개체군 성장에 미치는 영향)

  • Hwang, Un-Ki;Ryu, Hyang-Mi;Heo, Seung;Chang, Soo-Jung;Lee, Ki-Won;Lee, Ju-Wook
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.353-360
    • /
    • 2016
  • Effect of heavy metals(Cd, Cu, Zn) on the survival and population growth rates(PGR) of marine rotifer, Brachionus plicatilis were examined. B. plicatilis were exposed to Cd, Cu and Zn for 24 h to determine their survival and 72 h to determine their PGR. Survival rates in the control groups were greater than 90%. They were decreased with increasing concentrations of Cd, Cu and Zn. Survival rates were reduced in a concentration-dependent manner. Significant reduction in survival rates after exposure to Cd, Cu and Zn at concentration greater than 40.00, 0.13 and $10.00mg\;L^{-1}$, respectively. PGR in the control groups were greater than 0.50. They were decreased with increasing concentrations of heavy metals. PGR were reduced in a concentration-dependent manner. Significant reduction in PGR after exposure to Cd, Cu and Zn occurred at concentration greater than 12.5, 0.06 and $1.00mg\;L^{-1}$, respectively. The order of heavy metal toxicity based on PGR was Cu>Zn>Cd, with $EC_{50}$ (50% Effective Concentration) values of 0.12, 6.15 and $21.41mg\;L^{-1}$, respectively. The lowest-observed-effective-concentrations(LOEC) of PGR after exposure to Cd, Cu and Zn were 12.50, 0.06 and $1.00mg\;L^{-1}$, respectively. The No-observed-effective-concentrations(NOEC) of PGR after exposure to Cd, Cu and Zn were 6.25, 0.03 and $0.01mg\;L^{-1}$, respectively, in marine ecosystems have toxic effects on PGR of B. plicatilis. These results suggest that the PGR of B. plicatilis are useful tool to assess the effect of heavy metals on primary consumers in marine natural ecosystems.

Processability and Mechanical Characteristics of Glass Fiber and Carbon Fiber Reinforced PA6 for Reinforcement Content

  • Lee, S.B.;Cho, H.S.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.184-188
    • /
    • 2015
  • There is a need for light weight and high stiffness characteristics in the building structure as well as aircraft and cars. So fiber reinforced plastic with the addition of reinforcing agent such as glass fiber, carbon fiber, aramid fiber is utilized in this regard. In this study, mechanical strength, flow property and part shrinkage of glass fiber and carbon fiber reinforced PA6 were examined according to reinforcement content such as 10%, 20%, and 30%, and reinforcement type. The mechanical property was measured by a tensile test with specimen fabricated by injection molding and the flow property was measured by spiral test. In addition, we measured the part shrinkage of fiber reinforced PA6 that affects part quality. As glass fiber content increases, mechanical property increased by 75.4 to 182%, and flow property decreased by 18.9 to 39.5%. And part shrinkage decreased by 52.9 to 60.8% in the flow direction, and decreased by 48.2 to 58.1% in the perpendicular to the flow direction. As carbon fiber content increases, mechanical property increased by 180 to 276%, flow property decreased by 26.8 to 42.8%, and part shrinkage decreased by 65.0 to 71.8% and 69.5 to 72.7% in the flow direction and the direction perpendicular to the flow respectively.