Browse > Article
http://dx.doi.org/10.4490/algae.2014.29.4.311

Biocide sodium hypochlorite decreases pigment production and induces oxidative damage in the harmful dinoflagellate Cochlodinium polykrikoides  

Ebenezer, Vinitha (Department of Life Science, Sangmyung University)
Ki, Jang-Seu (Department of Life Science, Sangmyung University)
Publication Information
ALGAE / v.29, no.4, 2014 , pp. 311-319 More about this Journal
Abstract
The biocide sodium hypochlorite (NaOCl) is widely used for controlling algal growth, and this application can be extended to marine environments as well. This study evaluates the biocidal efficiency and cellular toxicity of NaOCl on the harmful dinoflagellate Cochlodinium polykrikoides, with emphasis on pigment production and antioxidant enzyme activity. The test organism showed dose-dependent decrease in growth rate on exposure to NaOCl, and the 72 h $EC_{50}$ was measured to be $0.584mg\;L^{-1}$. NaOCl significantly decreased pigment levels and chlorophyll autofluorescence intensity, indicating possible detrimental effects on the photosystem of C. polykrikoides. Moreover, it significantly increased the activities of antioxidant enzymes, suggesting the production of reactive oxygen species in the cells. These data indicate that NaOCl exerted deleterious effects on the photosynthetic machinery and induced oxidative damage in the dinoflagellate and this biocide could be effectively used for the control of algal blooms.
Keywords
antioxidant enzyme activity; chlorophyll autofluorescence; Cochlodinium polykrikoides; harmful algal blooms; sodium hypochlorite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Heath, R. L. & Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198.   DOI   ScienceOn
2 Ken, C. F., Hsiung, T. M., Huang, Z. X., Juang, R. H. & Lin, C. T. 2005. Characterization of the Fe/Mn-superoxide dismutase from diatom Thallassiosira weissflogii: cloning, expression, and property. J. Agric. Food Chem. 9:1470-1474.
3 Kudela, R. M. & Gobler, C. J. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71-86.   DOI
4 Leichert, L. I., Gehrke, F., Gudiseva, H. V., Blackwell, T., Ilbert, M., Walker, A. K., Strahler, J. R., Andrews, P. C. & Jakob, U. 2008. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. U. S. A. 105:8197-8202.   DOI
5 Levasseur, M., Thompson, P. A. & Harrison, P. J. 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29:587-595.   DOI   ScienceOn
6 Li, X., Ping, X., Xiumei, S., Zhenbin, W. & Liqiang, X. 2005. Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 60:188-192.   DOI
7 Li, X. J., Gu, J., Lu, S. D. & Sun, F. Y. 2002. Melatonin attenuates MPTP-induced dopaminergic neuronal injury associated with scavenging hydroxyl radical. J. Pineal. Res. 32:47-52.   DOI
8 Ma, Z., Gao, K., Li, W., Xu, Z., Lin, H. & Zheng, Y. 2011. Impacts of chlorination and heat shocks on growth, pigments and photosynthesis of Phaeodactylum tricornutum (Bacillariophyceae). J. Exp. Mar. Biol. Ecol. 397:214-219.   DOI
9 Mishra, S., Jha, A. B. & Dubey, R. S. 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565-577.   DOI
10 Nancharaiah, Y. V., Rajadurai, M. & Venugopalan, V. P. 2007. Single cell level microalgal ecotoxicity assessment by confocal laser scanning microscopy and digital image analysis. Environ. Sci. Technol. 41:2617-2621.   DOI
11 Organization for Economic Cooperation and Development. 2011. OECD guidelines for the testing of chemicals. Proposal for updating guideline 201. Freshwater alga and cyanobacteria, growth inhibition test. OECD Publications, Paris, 21 pp.
12 Panasenko, O. M., Gorudko, I. V. & Sokolov, A. V. 2013. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry Mosc. 78:1466-1489.   DOI
13 Panasenko, O. M., Panasenko, O. O., Briviba, K. & Sies, H. 1997. Hypochlorite destroys carotenoids in low density lipoproteins thus decreasing their resistance to peroxidative modification. Biochemistry Mosc. 62:1140-1145.
14 Park, S. Y., Choi, E. S., Hwang, J., Kim, D., Ryu, T. K. & Lee, T.-K. 2009. Physiological and biochemical responses of Prorocentrum minimum to high light stress. Ocean Sci. J. 44:199-204.   DOI
15 Parsons, T. R., Maita, Y. & Lalli, C. M. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 184 pp.
16 Patil, J. S. & Jagadeesan, V. 2011. Effect of chlorination on the development of marine biofilms dominated by diatoms. Biofouling 27:241-254.   DOI
17 Peker, I., Akca, G., Sarikir, C., Alkurt, M. T. & Celik, I. 2014. Effectiveness of alternative methods for toothbrush disinfection: an in vitro study. Sci. World J. 2014:726190.
18 Beauchamp, C. & Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-287.   DOI   ScienceOn
19 Arnhold, J., Mueller, S., Arnold, K. & Grimm, E. 1991. Chemiluminescence intensities and spectra of luminol oxidation by sodium hypochlorite in the presence of hydrogen peroxide. J. Biolumin. Chemilumin. 6:189-192.   DOI
20 Bajszar, G. & Dekonenko, A. 2010. Stress-induced Hsp70 gene expression and inactivation of Cryptosporidium parvum oocysts by chlorine-based oxidants. Appl. Environ. Microbiol. 76:1732-1739.   DOI
21 Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:217037.
22 Peng, C.-C., Chyau, C.-C., Wang, H.-E., Chang, C.-H., Chen, K.-C., Chou, K.-Y. & Peng, R. Y. 2013. Cytotoxicity of ferulic acid on T24 cell line differentiated by different microenvironments. Biomed. Res. Int. 2013:579859.
23 Rosen, H., Michel, B. R., van Devanter, D. R. & Hughes, J. P. 1998. Differential effects of myeloperoxidase-derived oxidants on Escherichia coli DNA replication. Infect. Immun. 66:2655-2659.
24 Sato, M., Murata, Y., Mizusawa, M., Iwahashi, H. & Oka, S.-I. 2004. A simple and rapid dual-fluorescence viability assay for microalgae. Microbiol. Cult. Coll. 20:53-59.
25 Shin, S.-Y., Lee, H.-S., Kwon, S.-Y., Kwon, S.-T. & Kwak, S. S. 2005. Molecular characterization of cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta. Plant Physiol. Biochem. 43:55-60.   DOI   ScienceOn
26 Soto, P., Gaete, H. & Hidalgo, M. E. 2011. Assessment of catalase activity, lipid peroxidation, chlorophyll-a and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat. Am. J. Aquat. Res. 39:280-285.   DOI
27 Spickett, C. M., Jerlich, A., Panasenko, O. M., Arnhold, J., Pitt, A. R., Stelmaszynska, T. & Schaur, R. J. 2000. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim. Pol. 47:889-899.
28 Trampe, E., Kolbowski, J., Schreiber, U. & Kuhl, M. 2011. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. Mar. Biol. 158:1667-1675.   DOI
29 Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. 1998. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, 1220 pp.
30 Cabiscol, E., Tamarit, J. & Ros, J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3:3-8.
31 Ebenezer, V. & Ki, J.-S. 2012. Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides. Algae 27:63-70.   과학기술학회마을   DOI
32 Ebenezer, V. & Ki, J.-S. 2013. Physiological and biochemical responses of the marine dinoflagellate Prorocentrum minimum exposed to the oxidizing biocide chlorine. Ecotoxicol. Environ. Saf. 92:129-134.   DOI
33 Ebenezer, V., Nancharaiah, Y. V. & Venugopalan, V. P. 2012. Chlorination-induced cellular damage and recovery in marine microalga, Chlorella salina. Chemosphere 89:1042-1047.   DOI
34 Estrela, C., Estrela, C. R. A., Barbin, E. L., Spano, J. C. E., Marchesan, M. A. & Pecora, J. D. 2002. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 13:113-117.   DOI
35 Hahn, S., Melching-Kollmuss, S., Bitsch, A., Schneider, K., Oltmanns, J., Hassauer, M., Schuhmacher-Wolz, U., Voss, J.-U., Gartiser, S., Jager, I. & Mangelsdorf, I. 2005. Health risks from biocide-containing products and articles of daily use. Project Funding Number (UFOPLAN) 204 61 218/05. German Federal Environmental Agency, Hannover, 20 pp.
36 Halliwell, B. 2006. Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiol. 141:312-322.   DOI   ScienceOn
37 White, G. C. 2010. White's handbook of chlorination and alternative disinfectants. 5th ed. John Wiley & Sons, Inc., Hoboken, NJ, 1062 pp.
38 Tripathi, B. N., Metha, S. K., Amar, A. & Gaur, J. P. 2006. Oxidative stress in Scenedesmus sp. during short-and long-term exposure to $Cu^{2+}$ and $Zn{2+}$. Chemosphere 62:538-544.   DOI
39 Vitro, R., Manas, P., Alvarez, I., Condon, S. & Raso, J. 2005. Membrane damage and microbial inactivation by chlorine in the absence and presence of chlorine-demanding substrate. Appl. Environ. Microbiol. 71:5022-5028.   DOI   ScienceOn
40 Wang, Z.-H., Nie, X.-P., Yue, W.-J. & Li, X. 2012. Physiological responses of three marine microalgae exposed to cypermethrin. Environ. Toxicol. 27:563-572.   DOI   ScienceOn
41 Winter, J., Ilbert, M., Graf, P. C. F., Ozcelik, D. & Jakob, U. 2008. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135:691-701.   DOI