• Title/Summary/Keyword: 7-Wire Strand

Search Result 20, Processing Time 0.026 seconds

Development and Performance Test for Unbonded Post-Tensioned Anchor (비부착 강연선에 대한 포스트텐션 정착구 개발 및 성능 시험)

  • Cho, Ah Sir;Jo, Yeong Wook;Jeon, Byong Kap;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • An unbonded post-tensioned anchor using a 15.2 mm diameter 7-wire strand was developed based on finite element analysis and experimental testing. In order to evaluate its performance, static load tests and load transfer tests were conducted following KCI-PS101. The static load tests and additional strand tensile tests confirmed that the developed anchor had a capacity more than nominal tensile strength of a 7-wire strand without any damage or deterioration. According to the result of load transfer tests for many different reinforcing details, specimens with no additional reinforcing bars sustained at least 1.64 times the nominal tensile strength of the strand.

Applicability Verification of High-strength Parallel Wire Strands by Tensile Tests (인장 실험을 통한 현수교 주케이블용 고강도 평행선스트랜드의 적용성 검토)

  • Yoo, Hoon;Seo, Ju-Won;Lee, Sung-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.435-447
    • /
    • 2011
  • This paper discusses the problems in application of a parallel wire strand with high performance steel wires, which have the tensile strength of 1960 MPa grade, as a major component of the main cables in suspension bridges. Construction methods of main cables in suspension bridges are briefly reviewed by comparing the pros and cons of available methods. Required items for performance and quality of parallel wire strands are described based on the established references. Ultimate tensile strength tests are carried out for seven specimens in order to analyze the behavior of high-performance parallel wire strands. The test results demonstrate that the properties of test specimens are satisfied with performance indexes specified in this paper. The high-performance parallel wire strands are acceptable for application in main cables of suspension bridges.

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.

Permeability of Magnetic Flux of PS Steel for Variation of Stress and Temperature (긴장재의 응력 및 온도변화에 따른 자속투과율)

  • Park, Jin Su;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.323-331
    • /
    • 2022
  • An experimental study was conducted to investigate the effect of applied tensile force and temperature on the permeability of magnetic flux in prestressing steel. The permeability of magnetic flux is the ratio at which the magnetic flux between two points passes. The prestressing steel used in these experiments included a 7-mm PS wire mainly used for cable-stayed bridges and a 12.7-mm PS strand for prestressed concrete bridges. The experiments to extract the permeability of the magnetic flux of steel wire and strand were conducted under various tensile levels and temperature conditions. From the experimental results, it was observed that the permeability of magnetic flux of the PS tension material was linearly proportional to the applied tensile stress level, and inversely proportional to the temperature. If the experimental relationship among the magnetic permeability, temperature, and prestressing ratio of a PS tension material is known in advance, the current tension stress level on PS members can be evaluated by measuring solely the magnetic permeability and temperature.

Arthroscopic Treatment of Fractures of the Intercondylar Eminence of the Tibia Using Pull-Out Wire (견인강선을 이용한 경골극 견열 골절의 관절경적 치료)

  • Kim, Hyun Kon;Kim, Sung Jae;Hahn, Myung Hoon;Kang, Yong Ho;Jung, Hwan Yong
    • Journal of the Korean Arthroscopy Society
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • Recently, a variety of arthroscopic techniques have been reported for the treatment of the displaced tibial eminence fracture. The purpose of this study was to describe details of arthroscopic technique using pull-out wire and to evaluate the results. Eleven patients with irreducible type II and type III tibial eminence fractures underwent the arthroscopic reduction and internal fixation using double strand pull-out wiring. The anterior cruciate ligament tibial drill guide was utilized for the reduction of fracture and passage of the guide pins. The tibial eminence fracture was firmly fixed with double strand 26-gauge pull-out wire(0.45mm diameter). Fracture union was achieved at 7.2 weeks (range, six to eight weeks) after operation. All cases were united at the last follow-up. Subjectively, nine patients had no pain and no restriction of daily activities. Two patients with combined injuries had limitation of knee motion(10 to 130 degrees, respectively) and one patient showed mild anterior laxity. Early rehabilitation was enabled without loss of reduction and breakage of pull-out wire. The arthroscopic reduction and internal fixation using pull-out wire showed good results including early rehabilitation, early fracture union, minimal morbidity, and no requirement of the second operation for hard ware removal.

  • PDF

Anions as Connectors for Higher Dimensions. Silver(I) Trifuoracetate with 3,3'-Oxybispyridine vs 3,3'-Thiobispyridine

  • Kim, Yun-Ju;Yoo, Kyung-Ho;Park, Ki-Min;Hong, Jong-Ki;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1744-1748
    • /
    • 2002
  • Trifluoroacetate anion as a connector has been studied on $AgCF_3CO_2$ with 3,3'-$Py_2X$(X=O vs S) produces 1 : 1 adducts of [Ag($CF_3CO_2$)(3,3'-$Py_2X<$)]. Crystallographic characterization of [Ag($CF_3CO_2$)(3,3'-$Py_2X$)](monoclinic $P2_1$a=7.383(1)$\AA$b=19.801(3)$\AA$c=9.297(3)$\AA$,$\beta$=$100.26(2)^{\circ}$,V=1337.4(5) $\AA^3$, Z=2, R=0.0386) reveals that the 3,3'-$Py_2O$ spacer connects two silver ions to give a single strand and that the single strands are linked via the trifluoroacetate anions in an "up and down even-bridge" to give an elegant molecular grid. The framework of [$Ag(CF_3CO_2)(3,3'-Py_2X)$](monoclinic $P2_1/c$a=8.331(2)$\AA$b=14.010(2)$\AA$,c=11.926(3 $\AA$$\beta$=$93.70(2)^{\circ}$=1385.1(6)$\AA^3$, Z=4, R=0.0589) is a single-strand. The single strands are connected via the trifluoroacetate anions in a double-bridge, resulting in a typical molecular chicken-wire. The trifluoroacetate anion as a connector appears to be primarily associated with its moderately coordinating ability. Their structural features have been discussed based on the anion exchangeability. Thermal analyses indicate that the compounds are stable up to approximately $200^{\circ}C$.

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.

Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress (Tendon의 인장응력에 따른 자기이력특성 변화의 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2015
  • The iron is an element having a high yield strength, mechanical hardness, good electrical conductivity, and also it has been used in various fields because of ease machining. In bridges have been used tendon made of a steel wire for large loads and light weight. Tension measurement of tendon employed in PreStressed Concrete (PSC) bridge is very important for the bridge safety check. NDT (Non-Destructive Testing) is essential for the safety check, however, magnetic NDT is difficult to apply due to the non-linear magnetization curve and hysteresis loop in the magnetic properties. In this work, for basic study of magnetic NDT application, we have constructed a B-H loop measuring system for 7-strand tendon of which diameter is 15.5 mm, and which can apply tensile stress up to 2.0 GPa. We have measured hysteresis loops of two kinds of tendons under different tensile stress. Amplitude permeability and maximum magnetic induction near knee show the most sensitive and high linearity depends on tensile stress. Relative amplitude permeability was decreased from 500 to 200 and maximum magnetic flux density changed 0.6 T.

Long-term monitoring of ground anchor tensile forces by FBG sensors embedded tendon

  • Sung, Hyun-Jong;Do, Tan Manh;Kim, Jae-Min;Kim, Young-Sang
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, there has been significant interest in structural health monitoring for civil engineering applications. In this research, a specially designed tendon, proposed by embedding FBG sensors into the center king cable of a 7-wire strand tendon, was applied for long-term health monitoring of tensile forces on a ground anchor. To make temperature independent sensors, the effective temperature compensation of FBG sensors must be considered. The temperature sensitivity coefficient ${\beta}^{\prime}$ of the FBG sensors embedded tendon was successfully determined to be $2.0{\times}10^{-5}^{\circ}C^{-1}$ through calibrated tests in both a model rock body and a laboratory heat chamber. Furthermore, the obtained result for ${\beta}^{\prime}$ was formally verified through the ground temperature measurement test, expectedly. As a result, the ground temperature measured by a thermometer showed good agreement compared to that measured by the proposed FBG sensor, which was calibrated considering to the temperature sensitivity coefficient ${\beta}^{\prime}$. Finally, four prototype ground anchors including two tension ground anchors and two compression ground anchors made by replacing a tendon with the proposed smart tendon were installed into an actual slope at the Yeosu site. Tensile forces, after temperature compensation was taken into account using the verified temperature sensitivity coefficient ${\beta}^{\prime}$ and ground temperature obtained from the Korean Meteorological Administration (KMA) have been monitored for over one year, and the results were very consistent to those measured from the load cell, interestingly.

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.