• Title/Summary/Keyword: 7% ethanol

Search Result 2,797, Processing Time 0.03 seconds

Effects of Protein and Fiber on Antioxidant Enzyme Activites of Brain in Ethanol-Treated Rats (에탄올을 투여한 흰쥐 노조직의 항산화효소계 활성에 미치는 단백질과 섬유소의 영향)

  • 이미경
    • Journal of Nutrition and Health
    • /
    • v.33 no.6
    • /
    • pp.613-618
    • /
    • 2000
  • This study was to investigate the effect of dietary protein and fiber on the antioxidant enzyme activities of brain in acute or chronic ethanol-treated rats. Male Sprague-Dawley rats were fed on diets containing two levels of protein(7%, 20%) with two levels of fiber (5%, 10%) Rats were administered 40%(v/v) ethanol(5g/kg body weight)orally 90min before decaptiation in acute ethanol-treated groups and 25%(v/v) ethanol(5g/kg body weight) once a day for 5 weeks in chronic ethanol treated-groups. The rats were sacrificed after 5 weeks of feeding periods. Superoxide dismutase and gluthathione S-transferase activities were lower in chronic ethanol-treated groups than acute ethanol-treated groups whereas catalase and glutathuone peroxidase activities were significantly increased by chronic ethanol treatment. Low protein supplement accelerated to change of their activities however dietary fiber levels did not affect antioxidant enzyme activities. Chronic ethanol treatment and/or low protein supplement results in increasing the brain lipid peroxide content but in lowering glutathione level. (Korean J Nutrition 33(6) ; 613~618, 2000)

  • PDF

Effects of Compounds Isolated from Ainsliaea acerifolia on the Hepatic Alcohol Dehydrogenase Activity (단풍취로부터 분리한 Apigenin $7-O-{\beta}-D-glucoside$가 알콜대사효소에 미치는 영향)

  • Zee, Ok-Pyo;Shin, Mal-Shick;Moon, Hyung-In
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.162-165
    • /
    • 1999
  • Effects of compounds isolated from Ainsliaea acerifolia on alcohol metabolism in rats were examined and the results were as follows: Apigenin $7-O-{\beta}-D-glucoside$, after a single oral administration to rats, was found to cause a significant decrease in the serum ethanol concentration as well as enhancement of liver cytosolic alcohol dehydrogenase(ADH) activity.

  • PDF

Antioxidative Effect of Pine, Oak, and Lily Pollen Extracts (송화분, 참나무 및 백합화분 추출물의 항산화 효능)

  • Kim, Seok-Joong;Youn, Kwang-Sup;Park, Hee-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.833-837
    • /
    • 2005
  • Antioxidative activities of pine, oak, and lily pollen extracts were evaluated based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging ability and inhibition of lipid peroxidation in animal tissues. Each pollen was extracted with 50% ethanol, 100% ethanol or water. DPPH radical-scavenging capacity of 50% ethanol extract ($EC_{50}$ 40.0 mg/mL) of pine pollen was higher than those of water (46.8 mg/mL) and 100% ethanol (131.2 mg/mL) extracts of pollen. Fifty percent ethanol (3,2 mg/mL) was also better than 100% ethanol (4.5 mg/mL) and water (8.3 mg/mL) for extraction of oak pollen. For preparation of lily pollen extracts, 100% ethanol was most effective (14.0 mg/mL), followed by water (18.8 mg/mL) and 50% ethanol (24.0 mg/mL). Oak pollen showed higher DPPH radical-scavenging activity than others. Lipid peroxidation in rat brain homogenate induced by ascorbate-Fe3+-EDTA and rat kidney homogenate were inhibited by water extracts of all pollens in dose-dependent manner. Extracts of oak and lily pollen showed higher lipid peroxidation inhibition than pine pollen extract. Polyphenol content was highest in oak pollen extract $(32.5{\pm}0.7\;{\mu}g/mg\;pollen)$, followed by lily extract $(25.9{\pm}1.4\;{\mu}g/mg\;pollen)$ and pine extract $(9.3{\pm}0.7\;{\mu}g/mg\;pollen)$.

Continuous Alcohol Fermentation by a Tower Fermentor with Cell Recycle Using Flocculating Yeast Strain (Flocculating 효모균주의 재순환에 의한 Tower 발효조를 이용한 연속알콜발효)

  • 페차랏칸자나시리완;유연우김공환
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 1989
  • A study on the continuous fermentation with cell recycle by a tower fermentor to produce ethanol has been carried out. ethanol fermentation was conducted with flocculating yeast strain, Saccharomyces cerevisiae TS4, to compare the ethanol productivity with conventional continuous process. Employing a 15% glucose feed, a cell density of 50 g/l was obtaind. The ethanol productivity of the cell recycle system was found to be 26.5g EtOH/1-hr, which was nearly 7.5 times higher than the conventional continuous process without cell recycle. A cell recycle ratio of 7 to 8 resulted in the highest ethanol productivity and cell concentration. Thus the cell recycle ratio was found to be a key factor in controlling the production of clarified overflow liquid. An aeration rate above 3.8 $\times$ 10-3 VVM seemed to decrease the ethanol productivity. The continuous fermentation with cell recycle was successfully used in the separation of cells from fermentation broth with enhancement of mixing in the tower fermentor.

  • PDF

Continuous Ethanol Production Using immobilized Baker's Yeast (고정화 효모를 이용한 연속적 에탄올 생산)

  • 한면수;하상도;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.398-404
    • /
    • 1991
  • - Ethanol production by calcium alginate-immobilized baker's yeast was studied in the continuous shaked-flask reactor (CSFR) using glucose medium as a feed. Immobilized cells were stable at 30~$37^{\circ}C$ and pH 4~8. Fermentation characteristics of immobilized baker's yeast were examined changing the initial glucose concentration employed were 50, 100 and 150 g/l, respectively. It was investigated that the influent glucose concentration and the dilution rate have an influence on the ethanol fermentation characteristics at steady state in continuous culture of immobilized baker's yeast. The optimum conditions for high ethanol productivity and low residual glucose output in ethanol prodution were shown to be 0.2 h ' for the dilution rate and 150 g/l for the influent glucose concentration. The maximum ethanol productivity, ethanol yield, specific growth rate and glucose conversion rate were around 7.12 g/$l\cdot h$, 0.23, 0.366 g/$l\cdot h$ and 78.43, respectively.

  • PDF

Anti-oxidant and Anti-aging Activity on Saxifraga stolonifera MEERBURGH Ethanol Extract (바위취 에탄올 추출물의 항산화 및 항노화 작용)

  • Yoon, Mi-Yun;Lim, Hye-Won;Sim, Sang-Soo;Choe, Tae-Boo
    • YAKHAK HOEJI
    • /
    • v.51 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • To investigate the effect of ethanol extract of Saxifraga stolonifera MEERBURGH on skin care, we measured anti-oxidant and anti-aging activity. S. stolonifera ethanol extract itself had anti-oxidant activity in a dose-dependent manner in DPPH radical scavenging. Silica dose-dependently increased the intracellular ROS generation in RAW 264.7 cells. S. stolonifera ethanol extract inhibited silica-induced intracellular superoxide anion generation, $H_2O_2$ and hydroperoxide generation in RAW 264.7 cells. S. stolonifera ethanol extract significantly inhibited both hyaluronidase and elastase activity, also significantly inhibited MMP-1(collagenase) activity as well. In NIH 3T3 fibroblast cells, S. stolonifera ethanol extract significantly increased collagen-like polymer synthesis, which suggesting the S. stolonifera ethanol extract might be used as hydration and anti-wrinkle agents. From the above results, it is suggested that the main ingredients of S. stolonifera ethanol extract play an important role in anti-oxidant and anti-aging activity.

Optimization of Fermentation Conditions for the Ethanol Production from Sweet Sorghum Juice by Saccharomyces cerevisiae using Response Surface Methodolgy (단수수 착즙액으로부터 에탄올 생산을 위한 반응표면분석법을 이용한 효모 발효조건 최적화)

  • Cha, Young-Lok;Park, Yu-Ri;Kim, Jung-Kon;Choi, Yong-Hwan;Moon, Youn-Ho;Bark, Surn-Teh;An, Gi-Hong;Koo, Bon-Cheol;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2011
  • Optimization of initial total sugar concentration of sweet sorghum juice, aeration time and aeration rate on ethanol production was performed by response surface methodology (RSM). The optimum conditions for ethanol production from concentrated sweet sorghum juice were determined as follows: initial total sugar concentration, 21.2 Brix; aeration time, 7.66h; aeration rate, 1.22 vvm. At the optimum conditions, the maximum ethanol yield was predicted to be 91.65% by model prediction. Similarly, 92.98% of ethanol yield was obtained by verification experiment using optimum conditions after 48 h of fermentation. This result was in agreement with the model prediction.

Characterization of Ethanol Fermentation Using Alginate Immobilized Thermotolerant Yeast Cells

  • Sohn, Ho-Yong;Park, Wan;Jin, Ingnyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.62-67
    • /
    • 1997
  • To enhance the hyperproductive and low energy-consuming ethanol fermentation rate, the thermotolerant yeast S. cerevisiae RA-74-2 cells were immobilized. An efficient immobilization condition was proved to be $1.5{\%}$ (w/v) alginate solution, neutral pH and 20 h activation of beads. The fermentation characteristics and stability at various temperatures were examined as compared with free S. cerevisiae RA-74-2 cells. The immobilized cells had excellent fermentation rate at the range of pH 3-7 at 30-$42^{\circ}C$ in 15-$20{\%}$ glucose media. When the seed volume was adjusted to 0.12 (v/v) (6ml bead/50 ml medium), $11{\%}$ (w/v) ethanol was produced during the first 34 hand $12.15{\%}$ (w/v) ethanol [$95{\%}$ (w/v) of theoretical yield] during the first 60 h in $25{\%}$ glucose medium. In repetitive fermentation using a 2 litre fermentor, 5.79-$7.27{\%}$ (w/v) ethanol [76-$95{\%}$ (w/v) of theoretical yield] was produced during the 40-55 h in $15{\%}$ glucose media. These data suggested the fact that alginate beads of thermotolerant S. cerevisiae RA-74-2 cells would contribute to economic and hyperproductive ethanol fermentation at high temperature.

  • PDF

Cosmetic Efficacy of Red Pinus densiflora and Its Epidermis Penetration with Polymer Micelle and Cell Penetrating Peptide

  • An, Gyu Min;Park, Su In;Shin, Moon Sam
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.10-24
    • /
    • 2019
  • This study aimed to investigate the effects and epidermis penetration system with polymer micelle of Red Pinus densiflora extract. In the antioxidant test, the total concentration of polyphenol compounds was determined to be $137.5163{\pm}7.70mg/g$ in ethanol extract, $133.956{\pm}1.57mg/g$ in hydrothermal extract. The DPPH radical scavenging effects were $95.29{\pm}0.15%$ in ethanol extract at 1,000 mg/L. Elastase inhibition rates were $100.00{\pm}2.85%$ in ethanol extract at 2,000 mg/L. The antimicrobial effect of the ethanol extraction was higher than that of hydrothermal extractions. In the epidermal permeability experiment, it was confirmed that the permeation of the polymer micelle containing the Red Pinus densiflora's ethanol extract and cell penetrating peptides was remarkable. Here, we confirmed that ethanol extract of Red Pinus densiflora displayed excellent the effects in antioxidant test and epidermis penetration system with polymer micelle. As a result, Red Pinus densiflora extract has potential to be used as a safe and natural cosmetic material in the future.

Effect of Chronic Ethanol Administration on Oxidative Stress and Cellular Defence System in Rat Myocardium (에탄올 장기 투여에 의한 쥐 심근조직의 산화적 스트레스와 생체내 항산화 효소활성의 변화)

  • 오세인
    • Journal of Nutrition and Health
    • /
    • v.29 no.7
    • /
    • pp.721-728
    • /
    • 1996
  • The level of oxidative tissue damage caused by free radicals generated from ethanol oxidation was determined in the myocardium of chronic ethanol fed-rats and the protective action of various radical scavenging enzymes was monitored, also. Adult male Sprague-Dawley rats were given ethanol in an amount of 36% of total calories via Lieber-DeCarli liquid diet for 6 weeks. Control group was pair-fed with the diet containing isocaloric amount of dextrin-maltose instead of ethanol. Chronic ethanol administration resulted in the increased amount of myocardial thiobarbituric acid reactive substance(TBARS), th parameter of lipid peroxidation, under our experimental condition. Chronic ethanol ingestion did not cause any change in activities of either glutathione peroxidase or glutathione reductase and glucose-6-phosphate dehydrogenase were decreased after ethanol treatment. Therefore, chronic ethanol administration seemed to cause considerble changes in cellular defense function against oxidative tissue damage in rat myocardium through glutathione utilizing system and radical generation system. However the ultimate net result of chronic ethanol inestion on the myocardium of rat was the oxidative tissue damage revealed by increased TBARS content.

  • PDF