• 제목/요약/키워드: 6XXX 알루미늄 합금

검색결과 9건 처리시간 0.023초

알루미늄 압출공정변수에 따른 재결정층 두께 변화 (The Thickness of Recrystallization Layer during Aluminum Extrusion Process)

  • 오개희;민유식;박상우;장계원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.266-269
    • /
    • 2005
  • The effect of exit temperature on the thickness of recrystallization layer during Al extrusion process was investigated. The recrystallization layer of an extruded Al alloy is an important feature of the product in a wide range of applications, particularly those within the automotive industry. The thicker recrystallized layer in the Al alloys can give rise to a number of problems including reduced fatigue resistance and orange peel during cold forming. But the interaction of extrusion process variables with the thickness of recrystallization layer is poorly understood, and there is limited information available regarding the role of the main hot extrusion variables. Using the 3650 US ton extrusion press, this paper describes the effect of the main process variables such as billet temperature, ram speed, and exit temperature on the thickness of recrystallization layer for the A6XXX Al alloy.

  • PDF

고속전철 내·외장재용 알루미늄 합금의 압출 금형 개발 및 압출 조건의 제어 (Extrusion Die Development of Interior & Exterior Parts for High Speed Train on Aluminum Alloys and Controls of Extrusion Conditions)

  • 김기주
    • 한국산학기술학회논문지
    • /
    • 제19권7호
    • /
    • pp.50-55
    • /
    • 2018
  • 압출기술에서 중요한 것은 금형의 설계 및 제작이며, 원하는 형태의 압출이 원활히 이루어지는 동시에 금형의 수명을 최대한 연장하고 효율성을 높이기 위한 금형의 설계가 필수적이다. 압출 온도, 압출 속도 등이 압출시의 주된 변수이며, 압출비 및 재료의 물성, 압출 형태에 따라 각기 다른 조건이 부가되어야 한다. 본 연구에서는 고속전철 내외장재 부품용 알루미늄 6xxx 계열 주조 합금의 압출공정에 대해 연구하였다. 6063, 6061, 6N01, 6005, 5083 and 6060 알루미늄 합금의 압출 금형 단면을 설계하였으며 이에 대한 실험을 실시하였다. 또한, 빌렛온도, 압출온도 및 재료의 변화에 따른 압출 압력과 같은 압출 조건들을 분석하였다. 6063 알루미늄 합금이 가장 낮은 온도와 압력에서 압출이 가능한 반면 6061 합금은 가장 높은 온도와 압력에서 압출이 가능하였다. 이들 실험결과로부터 수립된 조건들을 이용하여 성공적인 압출제품을 제조할 수 있었다.

원심분무법에 의한 고강도 7XXX 알루미늄 합금 분말의 제조 (The Fabrication of High Strength 7XXX Aluminum Alloy Powders by Centrifugal Disc Atomization)

  • 이태행;임승무;조성석
    • 한국주조공학회지
    • /
    • 제10권6호
    • /
    • pp.528-537
    • /
    • 1990
  • 7XXX aluminum alloy powders produced by the self-manufactured rotating disc atomizer were investigated to determine the influence of the atomization parameters on the particle size distributions in air atmosphere. The particle size distributions are almost always bimodal with the dominant mode on the large particle size. Average powder size of 7XXX aluminum alloy is $74/{\mu}m~125/{\mu}m$ when melt is poured with the rate of 9g /sec at 730$^{\circ}C$ on a rotating disc of 30㎜ diameter at 6300rad/sec. The mass of finer particle increased when disc diameter, angular velocity, pouring temperature increased and pouring rate decreased. The powder shapes of bimodal change from acicular to tear-drop and from tear-drop to ligament with increasing powder size. Powder shape was determined by the atomization mechanism and oxidation in liquid state. Microstructure of powders appeared to be cell and cellular dendrite. The SDAS of Al-7.9wt%Zn-2.4wt%Mg-1.5wt%Cu-0.9wt%Ni Powders is $0.8{\mu}m~1.0{\mu}m$ for the powders of $size+44{\mu}m~53{\mu}m$ and $1.6{\mu}m∼1.8{\mu}m$ for the powders of $size+105{\mu}m~125{\mu}m$, repectively.

  • PDF

고강도 7xxx 알루미늄 합금의 응력부식균열에 미치는 부식환경과 응력속도의 영향 (Effect of Corrosion Atmosphere and Strain Rate on the Stress Corrosion Cracking of High Strength 7xxx Aluminum Alloy)

  • 윤여완;김상호
    • 한국표면공학회지
    • /
    • 제41권3호
    • /
    • pp.121-128
    • /
    • 2008
  • High strength 7xxx aluminum alloys have been applied to automotive bump back beam of the some limited model for light weight vehicle. The aluminum bump back beam is manufactured through extrusion, bending and welding. The residual stress given on these processes combines with the corrosive atmosphere on the road spreaded with corrosive chemicals to melt snow to occur the stress corrosion cracking. The composition of commercial 7xxx aluminum has Zn/Mg ratio about 3 and Cu over 2 wt% for better strength and stress corrosion cracking resistivity. But this composition isn't adequate for appling to the automotive bump back beam with high resistance to extrusion and bad weldability. In this study the composition of 7xxx aluminum alloy was modified to high Zn/Mg ratio and low Cu content for better extrusion and weldability. To estimate the resistivity against stress corrosion cracking of this aluminum alloy by slow strain rate test, the corrosion atmosphere and strain rate separate the stress corrosion cracking from conventional corrosion must be investigated. Using 0.6 Mol NaCl solution on slow strain rate test the stress corrosion cracking induced fracture was not observed. By adding 0.3% $H_2O_2$ and 0.6M $Na_2SO_4$ to 1M NaCl solution, the corrosion potential and current density of polarization curve moved to active potential and larger current density, and on the slow strain rate test the fracture energy in solution was lower than that in pre-exposure. These mean the stress corrosion cracking induced fracture can be estimated in this 1M NaCl + 0.3% $H_2O_2$ + 0.6M $Na_2SO_4$ solution. When the strain rate was below $2{\times}10^{-6}$, the stress corrosion cracking induced fracture start to be observed.

6xxx계 알루미늄 합금의 경질 아노다이징 피막 형성 특성 연구 (Formation Characteristics of Hard Anodizing Films on 6xxx Aluminum Alloys)

  • 문상혁;문성모;임수근
    • 한국표면공학회지
    • /
    • 제52권4호
    • /
    • pp.203-210
    • /
    • 2019
  • In this work, anodizing behavior of 6xxx series aluminum alloys was studied under constant current density and constant voltage conditions in 20% sulfuric acid solution by V-t curves, I-t curves, thickness measurement, observations of surface appearance and cross-sectional observation of anodizing films. The film growth rate of the anodizing films on Al6063, Al6061 and Al6082 obtained at 20 V were $0.63{\mu}m/min$. $0.46{\mu}m/min$ and $0.38{\mu}m/min$, respectively. Time to the initiation of imperfections at the oxide/substrate interface under constant current condition was shortened and colors of anodizing films became darker with the amount of alloying elements in 6xxx series aluminum alloys. Based upon the experimental results obtained in this work, it is concluded that maximum anodizing film thickness without interfacial defects is reduced with increasing amount of alloying elements and brighter anodizing films can be obtained by decreasing amount of alloying elements in the aluminum alloys.

항공용 고강도 2xxx계 알루미늄 합금의 3.5 % 염수 환경에서의 응력부식균열 민감도 (Stress Corrosion Cracking Sensitivity of High-Strength 2xxx Series Aluminum Alloys in 3.5 % NaCl Solution)

  • 최희수;이다은;안수진;이철주;김상식
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.738-747
    • /
    • 2018
  • For the aerospace structural application of high-strength 2xxx series aluminum alloys, stress corrosion cracking(SCC) behavior in aggressive environments needs to be well understood. In this study, the SCC sensitivities of 2024-T62, 2124-T851 and 2050-T84 alloys in a 3.5 % NaCl solution are measured using a constant load testing method without polarization and a slow strain rate test(SSRT) method at a strain rate of 10-6 /sec under a cathodic applied potential. When the specimens are exposed to a 3.5 % NaCl solution under a constant load for 10 days, the decrease in tensile ductility is negligible for 2124-T851 and 2050-T84 specimens, proving that T8 heat treatment is beneficial in improving the SCC resistance of 2xxx series aluminum alloys. The specimens are also susceptible to SCC in a hydrogen-generating environment at a slow strain rate of $10^{-6}/sec$ in a 3.5 % NaCl solution under a cathodic applied potential. Regardless of the test method, low impurity 2124-T851 and high Cu/Mg ratio 2050-T84 alloys are found to have relatively lower SCC sensitivity than 2024-T62. The SCC behavior of 2xxx series aluminum alloys in the 3.5 % NaCl solution is discussed based on fractographic and micrographic observations.

차세대 분산형 고속전철용 압출재 알루미늄 합금의 마찰교반접합 (Friction Stir Welding in Extrusion Aluminum Carbody of HEMU-400X (Highspeed EMU-400km/h eXperiment))

  • 장웅성;천창근;김흥주;박인규;백진성;노양환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.980-985
    • /
    • 2008
  • Since its invention at TWI in 1991, Friction Stir Welding (FSW) has become a major joining process in the aerospace, railway and ship building industries especially in the fabrication of aluminium alloys. In an attempt to optimize the friction stir welding process of Al alloys for extrusion Aluminium carbody of HEMU-400X (Extrusion Aluminum 6xxx series), effects of joining parameters such as tool rotating speed, plunging depth and dwelling time on the weld joints properties were evaluated. Experimental tests were carried out for butt joined Al plates. A wide range of joining conditions could be applied to join Al alloys for Extrusion Aluminum 6xxx series without defects in the weld zone except for certain welding conditions with an insufficient heat input. The microstructures of welds have dynamic-recrystallized grain similar to stir zone in FSW weld. For sound joints without defects, at the rotation speed of 700 rpm with different welding speeds, the tensile strengths of the Stir Zone(SZ) were almost the same, 80% of those of the base metal. (JIS Z 2201)

  • PDF

6xxx계 알루미늄합금의 압출 금형용 SKD61 강재에 증착된 TiAlN, CrAlN 박막의 마찰.마모에 대한 연구 (A Study on the Friction and Wear Characteristic of TiAlN and CrAlN Coating on the SKD61 Extrusion Mold Steel for 6xxx Aluminum Alloy)

  • 김민석;고진현;김상호
    • 한국표면공학회지
    • /
    • 제43권6호
    • /
    • pp.278-282
    • /
    • 2010
  • In this research, the friction and wear characteristic behaviors of coating materials of TiAlN and CrAlN were investigated. The wear test was conducted in air and un-lubricated state using the reciprocating friction wear tester. Temperature were 50 and $120^{\circ}C$, and load were 3, 7, and 11 kgf for tests. By comparing the coefficient of friction and observing the wear microstructure, the friction and wear characteristic behaviors of TiAlN and CrAlN coating layers on SKD61 were investigated. The coefficient of friction of CrAlN coating was lower than that of TiAlN at all conditions. Therefore, CrAlN was suggested to be more advantageous coating than TiAlN for the extrusion mold of aluminum.