• Title/Summary/Keyword: 6MV linear accelerator

Search Result 188, Processing Time 0.02 seconds

Analysis of Low MU Characteristics of Siemens Primus Linear Accelerator using Diode Arrays for IMRT QA (다이오드 어레이를 이용한 Siemens사의 Primus 선형가속기의 저 MU 특성 분석)

  • Kim, Ju-Ree;Lee, Re-Na;Lee, Kyung-Ja
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.164-171
    • /
    • 2008
  • One of the most important task in commissioning intensity modulated radiotherapy (IMRT) into a clinic is the characterization of dosimetry performance under small monitor unit delivery conditions. In this study, method of evaluating dose monitor linearity, beam flatness and symmetry, and MLC positioning accuracy using a diode array is investigated. Siemens Primus linear accelerator (LA) with 6 and 10 MV x-rays was used to deliver radiation and the characteristics were measured using a multi array diodes. Monitor unit stabilities were measured for both x-ray energies. The dose linearity errors for the 6 MV x-ray were 2.1, 3.4, 6.9, 8.6, and 15.4 % when 20 MU, 10 MU, 5 MU, 4 MU, and 2 MU was delivered, respectively. Greater errors were observed for 10 MV x-rays with a maximum of 22% when 2 MU was delivered. These errors were corrected by adjusting D1_C0 values and reduced to less than 2% in all cases. The beam flatness and symmetry were appropriate without any correction. The picket fence test performed using diode array and film measurement showed similar results. The use of diode array is a convenient method in characterizing beam stability, symmetry and flatness, and positioning accuracy of MLC for IMRT commissioning. In addition, adjustment of D1-C0 value must be performed when a Siemens LA is used for IMRT because factory value usually gives unacceptable beam stability error when the MU/segment is smaller than 20.

  • PDF

The Radioprotection Effect of Aronia on Livers of Laboratory Rats Radiated to 6 MV X-ray of Linear Accelerator (선형가속기 6 MV X선에 조사된 흰쥐의 간에서 아로니아의 방사선 방호효과)

  • Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.97-104
    • /
    • 2020
  • This aimed at figuring out if there were the radioprotection effects of aronia on livers of laboratory rats radiated through serum test. For the objects of animal testing, one group consists of five male laboratory rats (weight 200~250 g), and the groups were set as follows: Group 1, normal; Group 2, 5 Gy radiated control group; and Group 3, 5 Gy radiated experiment group with aronia. Group 1(A) was prescribed with ordinary meal without radiation while the control group, Group 2(B) was prescribed with ordinary meal and radiation, and the experiment group, Group 3(C) was orally prescribed with aronia (daily oral dosage: 100 mg/kg/day) diluted with distilled water at the amount of 50 mg/kg/day twice a week, using oral zonde needle for rats for 14 days before being radiated, and then, radiation were made on them. For the study, using Linac (Linear Accelerator) 6 MV X-ray therapy device, rats were irradiated on their whole bodies once, and their blood was sampled for conducting five blood serum tests with regard to liver. For statistical analysis, ANOVA test was conducted. In conclusion, as a result of the analysis, it seemed that there were no the radioprotection effects of aronia on liver. However, it was confirmed statistically that ALB (P>0.05) showed no significance and that TP (P<0.05) showed significant differences. It is expected that there should be more tests in future.

Efficient Verification of X-ray Target Replacement for the C-series High Energy Linear Accelerator

  • Cho, Jin Dong;Chun, Minsoo;Son, Jaeman;An, Hyun Joon;Yoon, Jeongmin;Choi, Chang Heon;Kim, Jung-in;Park, Jong Min;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.29 no.3
    • /
    • pp.92-100
    • /
    • 2018
  • The manufacturer of a linear accelerator (LINAC) has reported that the target melting phenomenon could be caused by a non-recommended output setting and the excessive use of monitor unit (MU) with intensity-modulated radiation therapy (IMRT). Due to these reasons, we observed an unexpected beam interruption during the treatment of a patient in our institution. The target status was inspected and a replacement of the target was determined. After the target replacement, the beam profile was adjusted to the machine commissioning beam data, and the absolute doses-to-water for 6 MV and 10 MV photon beams were calibrated according to American Association of Physicists in Medicine (AAPM) Task Group (TG)-51 protocol. To verify the beam data after target replacement, the beam flatness, symmetry, output factor, and percent depth dose (PDD) were measured and compared with the commissioning data. The difference between the referenced and measured data for flatness and symmetry exhibited a coincidence within 0.3% for both 6 MV and 10 MV, and the difference of the PDD at 10 cm depth ($PDD_{10}$) was also within 0.3% for both photon energies. Also, patient-specific quality assurances (QAs) were performed with gamma analysis using a 2-D diode and ion chamber array detector for eight patients. The average gamma passing rates for all patients for the relative dose distribution was $99.1%{\pm}1.0%$, and those for absolute dose distribution was $97.2%{\pm}2.7%$, which means the gamma analysis results were all clinically acceptable. In this study, we recommend that the beam characteristics, such as beam profile, depth dose, and output factors, should be examined. Further, patient-specific QAs should be performed to verify the changes in the overall beam delivery system when a target replacement is inevitable; although it is more important to check the beam output in a daily routine.

A Study on Photon Dose Calculation in 6 MV Linear Accelerator Based on Monte Carlo Method (몬테카를로 방법에 의한 6 MV 선형가속기의 광자 흡수선량 분포 평가에 관한 연구)

  • Kang, Sang-Koo;Ahn, Sung-Hwan;Kim, Chong-Yeal
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • In this study we modeled the varian 2100C/D linear accelerator head and multi-leaf collimator by simulation with the GEANT4 Monte Carlo toolkit. Then central axis percentage depth dose profiles and lateral dose profiles within homogeneous water phantom($50{\times}50{\times}50\;cm^3$) were evaluated with 6 MV photon beam. The simulations were performed in two stages. In the first stage, photon energy spectrum at the target were computed were computed. Then spectra data was directly irradiated in the water phantom using sampling techniques. The simulation data were compared with experimental data to evaluate the accuracy of the model. Results showed that two data were matched within 2% error boundary. The proposed method will be applied for simulation of dose calculation and dose distribution study.

Evaluation of Dose Distribution of 6 MV X-ray using Optical Dosimetry (광 도시메트리시스템을 이용한 치료용 6 MV X선 선량분포 평가)

  • Kim, Sunghwan
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.925-932
    • /
    • 2019
  • In this paper, we developed optical dosimetry system with a plastic scintillator, a commercial 50 mm, f1.8 lens, and a commercial high-sensitivity CMOS (complementary metal-oxide semiconductor) camera. And, the correction processors of vignetting, geometrical distortion and scaling were established. Using the developed system, we can measured a percent depth dose, a beam profile and a dose linearity for 6 MV medical LINAC (Linear Accelerator). As results, the optically measured percent depth dose was well matched with the measured percent depth dose by ion-chamber within 2% tolerance. And the determined flatness was 2.8%. We concluded that the optical dosimetry system was sufficient for application of absorbed dose monitoring during radiation therapy.

Feasibility Study of Parallel- Plate Detector Using Dielectric film for 6 MV X-ray (6MV X-선 검출특성 조사를 위하여 유전체 필름을 이용하여 제작한 평행판 검출기의 유용성)

  • 조문준;김용은;이병용;김정기;임상욱;김현수;김기환
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • The parallel plate detector with dielectric film for dosimetry was designed to measure detection characteristic of 6 MV X-ray with medical linear accelerator. PTFE film was inserted into FEP films that are made by two one-side metal coated materials for ion source. The thicknesses of PTFE dielectric film was 100 ${\mu}{\textrm}{m}$ and the thickness of FEP dielectric film was 100 ${\mu}{\textrm}{m}$, respectively. This detector was fixed by two acrylic plate for physical hardness ad geometrical consistency. The geometrical condition for measurement with parallel-plate for detector was below; SSD=100 cm and the 5 cm depth between detector and phantom surface The major parameter of detector characteristics such as zero drift current, leakage current, charge response by applied voltage, reproducibility, linearity, TMR measurement, dose rate effect were measured. The zero drift currents are 8.3 pA and leakage currents are 10 pA. The charge response of applied voltage is showing linearity in 414 voltage. The measurement deviation of reproducibility in this detector is within 1% for dose and the linearity of applied dose shows in this detector. The TMR curves in phantom between this parallel plate detector and reference detector are matched within 3% deviation from maximum dose depth to 7.5 cm depth. It is considered that this dosimetric system is satisfactory for the purpose of the constancy check of the 6 MV x-ray from medical linear accelerator.

  • PDF

Monte Carlo Simulation of a Varian 21EX Clinac 6 MV Photon Beam Characteristics Using GATE6 (GATE6를 이용한 Varian 21EX Clinac 선형가속기의 6 MV X-선 특성모사)

  • An, Jung-Su;Lee, Chang-Lae;Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.571-575
    • /
    • 2016
  • Monte Carlo simulations are widely used as the most accurate technique for dose calculation in radiation therapy. In this paper, the GATE6(Geant4 Application for Tomographic Emission ver.6) code was employed to calculate the dosimetric performance of the photon beams from a linear accelerator(LINAC). The treatment head of a Varian 21EX Clinac was modeled including the major geometric structures within the beam path such as a target, a primary collimator, a flattening filter, a ion chamber, and jaws. The 6 MV photon spectra were characterized in a standard $10{\times}10cm^2$ field at 100 cm source-to-surface distance(SSD) and subsequent dose estimations were made in a water phantom. The measurements of percentage depth dose and dose profiles were performed with 3D water phantom and the simulated data was compared to measured reference data. The simulated results agreed very well with the measured data. It has been found that the GATE6 code is an effective tool for dose optimization in radiotherapy applications.

Dose Characteristics of Small Radiation Fields for 6MV X-ray of Linear Accelerator (선형가속기의 6MV X선에 대한 소형조사면의 선량측정)

  • Choi, Tae-Jin;Kim, Ok-Bae;Kim, Young-Hoon;Son, Eun-Ik;Kim, In-Hong
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.287-291
    • /
    • 1989
  • Radiation dosimetry has been extended to small fields less than $4\times4cm^2$ which may be suitable for irradiation of small intracranial tumors. Special consideration was given to the percentage depth dose and scatter correction factors with 0.14ml ion chamber, film dosimetry and TLD measurement. Calculated dose distributions were compared with measured data.

  • PDF

A Measurement of Kerma and Absorbed Dose in Photon Fields (Photon Beam에 대한 Kerma와 흡수선량의 측정)

  • Kim, Sung-Hee;Shin, Seung-Aea;Chu, Sung-Sil
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.77-82
    • /
    • 1986
  • Determination of the relation between the kerma(Kinetic Energy Released in Material) and the absorbed dose is one of the basic problems of dosimetry. Kerma and absorbed dose were measured for 6 MV X-ray from the high energy medical linear accelerator and $^{60}Co$ gamma-ray. The experimental results show that the absorbed dose in the transient equilibrium region practically coincide with the kerma in water and Al for $^{60}Co$. The maximum dose depths were $1.45g/cm^2$ for 6MV X-ray and $0.48g/cm^2\;for\;^{60}Co$ gamma-ray. The ratios of the absorbed dose at maximum build-up to the collision kerma at the surface, ($K^{att}$), were 0.949 for 6MV X-ray and 0.992 for $^{60}Co$ gamma-ray. No difference was found between water and Al when the standard field size was used. This results show that the dependence of $K^{att}$ on the material is very small.

  • PDF

Dose Characteristics of Stereotatic Radiosurgery CONE used for ML-6M Linear Accelerator (ML-6M LINAC에 장착한 Radiosurgery Cone의 Beam 특성에 대한 고찰)

  • Moon, Un-Chull;Kim, Hyun-Jin;Kim, Young-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.15-31
    • /
    • 1995
  • The radiosurgery treatment is one time, non surgical approach to the treatment of patients with intracranial disorders whose conditions would be difficult or dangerous to treat with conventional sugical procedures. The LINAC based radiosurgery is based on the combination of multiple isocentric arc irradiation with small fields centered in the stereotactic target. The absorption of the beam in a tissue equivalent medium, such as water, as well as the uniformity, or profile, of the beam must be precisely documented. The beam characteristics and dosimetric measurememts of the 6MV X-ray beam from a ML-6M linear accelerator are examined. The percent depth dose (PDD) and beam profile (including flatness, symmetry and penumbra) is calibrated with the radiosurgery cone in water phantom. The cone is made of lead which size is from $10{\times}10mm{\phi}$ to $30{\times}30mm{\phi}$ All of these dosimetric measurements sufficiently characterized the beam to permit safe clinical use.

  • PDF