• Title/Summary/Keyword: 6H_2O$

Search Result 6,927, Processing Time 0.03 seconds

Assembly of Six-Membered Vanadium Borophosphate Cluster Anions: Synthesis and Structures of (NH4)2(C2H10N2)6[BaH2O)5]2[V2P2BO12]6.8H2O and (NH4)8(C3H12N2)4[Ba(H2O)7][V2P2BO12]6.17H2O

  • Yun, Ho-Seop;Do, Jung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.146-150
    • /
    • 2005
  • Two new barium vanadium borophosphate compounds, $(NH_4)_2(C_2H_{10}N_2)_6[Ba(H_2O)_5]_2[V_2P_2BO_{12}]_6{\cdot}8H_2O$, Ba- VBPO1 and $(NH_4)_8(C_3H_{12}N_2)_4[Ba(H_2O)_7][V_2P_2BO_{12}]_6{\cdot}17H_2O$, Ba-VBPO2 have been synthesized by interdiffusion methods in the presence of diprotonated ethylenediamine and 1,3-diaminopropane. Compound Ba-VBPO1 has an infinite chain anion (${[BaH_2O)_5]_2[V_2P_2BO_{12}]_6}$$^{14-}$, whereas Ba-VBPO2 has a discrete cluster anion {[$Ba(H_2O)_7][V_2P_2BO_{12}]_6$}$^{16-}$. Crystal Data: $(NH_4)_2(C_2H_{10}N_2)_6[Ba(H_2O)_5]_2[V_2P_2BO_{12}]_6{\cdot}8H_2O$, triclinic, space group P$\overline{1}$ (no. 2), a = 13.7252(7) $\AA$, b = 15.7548(8) $\AA$, c = 15.8609(8) $\AA$, α = 63.278(1)$^{\circ}$, $\beta$ = 75.707(1)$^{\circ}$, $\gamma$ = 65.881(1)$^{\circ}$, Z = 1; $(NH_4)_8(C_3H_{12}N_2)_4[Ba(H_2O)_7][V_2P_2BO_{12}]_6{\cdot}17H_2O$, monoclinic, space group C2/c (no. 15), a = 31.347(2) $\AA$, b = 17.1221(9) $\AA$, c = 22.3058(1) $\AA$, $\beta$ = 99.303(1)$^{\circ}$, Z = 4.

The Effects of Ionic Strength on Polytungstate Ions Equilibrium in KCl Solution (다중텅그스텐산 이온평형에 대한 이온세기의 영향. 염화칼륨용액에서)

  • Ahn Sangwoon
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.157-170
    • /
    • 1974
  • The effects of ionic strength on the polynucleation reaction of tungstate ions and the protonized reaction of polytungstate ions have been investigated in the range of ionic strength from 1 M to 4 M KCl.The hexatungstate ions and the protonized forms of hexatungstate ions are formed in the tungstate solutions whose ionic strengths are 1 M to 4 M KCl. The equilibrium constants for the formation of hexatungstate ions and the protonized forms of hexatungstate ions are calculated in the range of ionic strength from 1 M to 4M KCl. The enthalpy changes for the formation of hexatungstate ions and the protonized forms of hexatungstate ions are as follows; $7H^++{6WO_4}^{2-}={HW_6O_{21}}^{5-}+3H_2O\;\;{\Delta}H^{\circ}=-62.4{\pm}0.6$$H^++{HW_6O_{21}}^{5-}={H_2W_6O_{21}}^{4-}\;\;{\Delta}H+_1^{\circ}=-4.12{\pm}0.10$$H^++{H_2W_6O_{21}}^{4-}={ H_3W_6O_{21}}^{3-}\;\;{\Delta}H_2^{\circ}=-4.36{\pm}0.30$ The free energy and entropy changes for the above reactions have been also calculated. A linear relation is formed between $log k_{6,7}$ and ionic strength, and $log k_1\;or\;log k_2\;vs{\cdot}{\mu}.$ $log k_{6,7}\;=\;D{\mu}+I,\;\;where\;D\;=\;1.66{\pm}0.02$$log k_1\;=\;D_1{\mu}+I_1,\;\;where\;D_1\;=\;-8.065{\pm}0.001$$log k_2\;=\;D_2{\mu}+I_2,\;\;where\;D_2\;=\;-0.376{\pm}0.006$

  • PDF

Different Dimensional and Structural Variations in Coordination Compounds of Cadmium, Manganese and Nickel Constructed from the Ligand 2,2'-Bipyidine-3,3',6,6'-tetracarboxylic Acid (H4bptc)

  • Xiang, Jing;Yang, Tian-Tian;Fu, Lu-Lu;Luo, Ya;Wu, Jia-Shou
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2597-2603
    • /
    • 2013
  • The reactions of hydrated $CdCl_2$, $MnCl_2$, and $NiCl_2$ with 2,2'-bipyidine-3,3',6,6'-tetracarboxylic acid ($H_4bptc$) afforded the mononuclear [$Cd^{II}(H_2bptc)(H_2O)_3]{\cdot}H_2O$ (1), linear $\{[Cd(H_2bptc)(H_2O)]{\cdot}3H_2O\}_n$ (2), 3-D heterobimetallic $[NaCd(Hbptc)(H_2O)]$ (3), layer $[Mn(H_2bptc)(H_2O)]_n$ (4) and a dinuclear compound $[Ni_2(H_2bptc)-(H_2O)_2]{\cdot}6H_2O$ (5). These compounds have been characterized by elemental analysis, IR, and their structures have been determined by X-ray crystallography. The thermal stabilities of 1-3 were measured by thermogravimetric analysis (TGA) and their solid state luminescence properties together with the free ligand $H_4bptc$ were investigated at room temperature.

Role of NH4 and H2O in Tutton Salt (NH4)2M(SO4)2·6H2O (M=Fe and Zn) Single Crystals Studied by 1H and 14N NMR at High Temperatures

  • Park, Sung Soo;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.67-71
    • /
    • 2017
  • At high temperature, the roles of $NH_4$ and $H_2O$ in $(NH_4)_2Fe(SO_4)_2{\cdot}6H_2O$ and $(NH_4)_2Zn(SO_4)_2{\cdot}6H_2O$ single crystals were investigated using a pulse NMR spectrometer. Temperature was shown to have a significant influence, causing changes in the deformation of $NH_4$ and $H_2O$. From the $^1H$ NMR and $^{14}N$ NMR spectrum, the forms of environment surrounding $^{14}N$ in $NH_4$ groups is more important than the loss of $H_2O$ groups. NMR studies indicate that $NH_4{^+}$ ions in Tutton salts play an important role in the changes of the crystal structure at high temperatures.

The Rate of Superoxide Radical (${O_2}^-$.) Production in Normal Fenton's Reagent at Different pHs (펜톤반응에서 pH의 변화에 따른 superoxide radical (${O_2}^-$.)의 생성)

  • 김용수;공성호;김재호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.73-81
    • /
    • 2002
  • In normal Fenton's reagent, the reductive mechanism of carbon tetrachloride (CT) with superoxide radical (${O_2}^-$.) was observed and the rate of ${O_2}^-$. production was investigated as a function of $H_2O$$_2$ concentration and pH. As pH was increased, the rate of 1-hexanol degradation was rapidly decreased from 90% (at pH 3) to 5% (at pH 11). On the other hand, more degradation of carbon tetrachloride was observed at higher pH regimes indicating Fenton's reaction is an oxidant-reductant co-existing system at neutral pHs. The rate of $O_2^{-}$ . production was observed at different $H_2$$O_2$ concentrations and at different pHs. The rate increased from (45.3$\pm$7.8) x $10^{-6}$ M/s to (151.0$\pm$26.2) x $10^{-6}$ M/s ($294mM H_2$$O_2$) at pH 11: the rate 3150 increased from (22.1$\pm$3.8) x $10^{-6}$ M/s at pH 7 to (151.0$\pm$26.2) x $^10{-6}$ M/s at pH 11 with 294mM $H_2$$O_2$, These results showed that Fenton's reagent could be applied at wide pH regimes. Especially, carbon tetrachloride, which can not be easily adsorbed to soils and then can be dissolved into groundwater causing a cancer, could be efficiently treated by Fenton's reagent.reagent.

Synthesis and Spectroscopic Studies of Metal Complexes Formed in the Reaction of Metal Ions with Urea at High Temperature (높은 온도에서 Urea와 금속이온과의 반응으로 얻어진 금속 Complexes의 합성과 분광학적 연구)

  • Gaballa, Akmal S.;Teleb, Said M.;Nour, El-Metwally
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • Urea reacts with PtCl2, H2[PtCl6]·6H2O, H2[IrCl6] and Ni(CH3CO2)2 in aqueous solution at high temperature (60-80 °C) yielding [PtCl2(Urea)]·2H2O (1), (NH4)2[PtCl6] (2), (NH4)2[IrCl6]·H2O (3) and [Ni2(OH)2(NCO)2(H2O)2] (4) complexes, respectively. In complex 1, urea coordinates to Pt(II) as a neutral bidentate ligand via amido nitrogen atoms. In complexes 2, 3 and 4 it seems that the coordinated urea molecules decompose during the reaction at high temperature and a variety of reaction products are obtained. All complexes were isolated in moderate yields as dark green (1), yellow (2), pale brown (3) and faint green (4) precipitates, respectively. The reaction products were characterized by their microanalysis, IR, 1H and 13C NMR spectra as well as thermal analysis. General mechanisms describing the formation of these complexes were suggested.

Synthesis of Zn-intermediate from alkali agents and its transformation to ZnO crystallinity (알칼리 침전제에 의해 제조된 아연 중간생성물 및 산화아연 결정화)

  • Jang, Dae-Hwan;Kim, Bo-Ram;Kim, Dae-Weon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.270-275
    • /
    • 2021
  • ZnO was synthesized according to the transformation behavior and crystallization conditions of Zn-intermediate obtained by zinc sulfate as a precursor and NaOH, Na2CO3 as a alkali agents. For ZnO crystallization, Zn4(OH)6SO4·H2O and Zn5(OH)6(CO3)2·H2O as a Zn-intermediate were calcined at 400℃ and 800℃ for 1 h, respectively, based on decomposition temperature from TGA. Zn4(OH)6SO4·H2O was confirmed to have mixed Zn4(OH)6SO4·H2O and ZnO at 400℃, and was completely thermally decomposed at 800℃ to form ZnO phase. The prepared Zn5(OH)6(CO3)2·H2O as a Zn-intermediate by the reaction with Na2CO3 was transformed to a complete ZnO crystallization over 400℃. Nano-sized ZnO can be synthesized at a relatively lower calcination temperature through the reaction with Na2CO3.

Formation Mechanism of SnO Plate (판상 SnO의 형성 메커니즘)

  • Kim, Byeung Ryeul;Park, Chae Min;Lee, Woo Jin;Kim, Insoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1084-1089
    • /
    • 2010
  • This study elucidates the formation mechanism of SnO plate observed during the precipitation reaction of a $SnCl_2$ aqueous solution. $Sn_{21}Cl_{16}(OH)_{14}O_6$ and $Sn_6O_4(OH)_4$ precipitates was formed at pH=3~5 and at pH=11, respectively. When the pH was in the range of 11.5~12.5, the $Sn_6O_4(OH)_4$ precipitates dissolved into $HSnO_2{^-}[Sn_6O_4(OH)_4+4OH^-={6HSnO_2{^-}+2H^+]$ and dissolved $HSnO_2{^-}$ ions reprecipitated to SnO plate $[HSnO_2{^-}+H^+=SnO+H_2O]$. The $Sn_6O_4(OH)_4$ precipitates completely transformed into SnO plate through a repeated process of dissolution-precipitation in the range of pH=11.5~12.5.

Chemical Equilibria of Lanthanides{Ln(Ⅲ)=Pr, Sm, Gd, Dy}-Macrocyclic Complexes with Auxiliary Ligands in $CH_3OH$(PartⅡ):Study of the Coordination of Oxygen-Containing Bases. ($CH_3OH$ 용매에서 란탄족 원소{Ln(Ⅲ)=Pr, Sm, Gd, Dy}-거대고리 착물과 보조 리간드 간의 화학평형 (제2보): 주게원자가 산소인 염기를 중심으로 고찰.)

  • Byun, Jong Chul;Park, Yu Chul;Han, Chung Hun
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.628-635
    • /
    • 1999
  • Direct preparative method of 2,6-diformyl-p-cresol and 2-hydroxy-3-hydroxy-5-methylbenzaldehyde from 2,6-bis(hydroxymethyl)-4-methylphenol using activated $Mn(IV)O_2$ was described. Hexadentate compartmental Iigands, $H_4L[A]\;and\; H_4L[B]$ were prepared by condensation reactions of 2-hydroxy-3-hydroxy methyl-5-methylbenzaldehyde with ethylenediamine and 1,3-diaminopropane respectively. By the reaction of macrocycle($H_4[20]DOTA$) with Ln(III) nitrate {Ln(III)=Pr, Sm, Cd, Dy }, discrete mononuclear Ln(III) complexes of the type $[Ln(H_2[20]DOTA)(ClO_4)(H_2O)]\;{\cdot}\;3H_2O$ were synthesized in the solid state. $[Ln([20]DOTA)(NO_3)(H_2O)](NO_3)_2\;{\cdot}\;xH_2O$ was placed in methanol for 2 days, and $[Ln([20]DOTA)(NO_3)(CH_3OH)]^{2+}$ was formed. The equilibrium constants(K) for the substitution of coordinated $CH_3OH$ in the Ln-[20]DOTA complexes by various auxiliary ligand, $L_a$(=salicylic acid, p-chlorobenzoic acid, benzoic acid, acetic acid, 4-bromophenol) were determined spectroscopically at 25$^{\circ}C$ and 0.1M $NaClO_4$. The K values calculated were in the order of salicylic acid > p-chlorobenzoic acid > benzoic acid > acetic acid > 4-bromophenol, while pKa of auxiliary ligands was in the opposite trend.

  • PDF

Structural Characterization of the Eight-Coordinated Dodecahedral Y(tpb)3(H2O)2 (8배위 12면체 Y(tpb)3(H2O)2착물의 합성과 구조)

  • Yu, Chong-Nam;Kang, Seong-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.3
    • /
    • pp.240-243
    • /
    • 2007
  • The eight coordinated yttrium(III) complex Y(tpb)3(H2O)2 (Htpb=4,4,4-Trifluoro-1-phenyl-1,3-butanedione) has been synthesized and structurally characterized by X-ray diffraction method. The coordination polyhedron of Y(tpb)3(H2O)2 has a dodecahedron. The angle between two trapezia, Y-O2-O1-O5-O6 and Y-O4-O3-O8-O7, is 89.59°. The O1-O5 and O3-O8 distances are 2.965 and 2.995 A whereas the O2-O6 and O4-O7 distances are 4.256 and 4.403 A.