• Title/Summary/Keyword: 6G mobile network

Search Result 73, Processing Time 0.024 seconds

Technology Trends and Research Direction of 6G Mobile Core Network (6G 모바일 코어 네트워크 기술 동향 및 연구 방향)

  • Ko, N.S.;Park, N.I.;Kim, S.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • The competition to lead the next generation of mobile technologies, 6G, is underway while the deployment of 5G has not been implemented worldwide. ITU-R plans to develop technical requirements and standards after completing the 6G Vision by 2023. It can be considered too early to have a concrete view of the 6G core network architecture from this timeline. However, major stakeholders have started making their presence felt by publishing their views. From updated analysis on the technology and service trends proposed, we present a list of research directions on 6G core network from several perspectives: distribution of network functions to nearer edge locations; future fixed-mobile convergence, including low earth orbit satellites; highly-precise QoS guarantee; supporting an extremely wide variety of service requirements; AI-native automation and intelligence; and aligning with the evolution of radio access network.

Towards Scalable and Cost-efficient Software-Defined 5G Core Network

  • Park, Jong Han;Choi, Changsoon;Jeong, Sangsoo;Na, Minsoo;Jo, Sungho
    • Information and Communications Magazine
    • /
    • v.33 no.6
    • /
    • pp.18-26
    • /
    • 2016
  • Network and network functions virtualization (NFV) promise a number of attractive benefits and thus have driven mobile network operators to transform their previously static networks to more dynamic and software-defined networks. In this article, we share a mobile network operator's view based on implementation and deployment experiences in the wild during the past few years towards a software-defined 5G core network. More specifically, we present a practical point of view from mobile network operators and elaborate on why some of the virtualization benefits such as total cost of ownership (TCO) reduction are not easily realized as initially intended. Then, we describe 5G visions, services, and their requirements commonly agreed across mobile operators globally. Given the requirements, we then introduce desirable characteristics of 5G mobile core network and its key enabling technologies.

Reliability-guaranteed multipath allocation algorithm in mobile network

  • Jaewook Lee;Haneul Ko
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.936-944
    • /
    • 2022
  • The mobile network allows redundant transmission via disjoint paths to support high-reliability communication (e.g., ultrareliable and low-latency communications [URLLC]). Although redundant transmission can improve communication reliability, it also increases network costs (e.g., traffic and control overhead). In this study, we propose a reliability-guaranteed multipath allocation algorithm (RG-MAA) that allocates appropriate paths by considering the path setup time and dynamicity of the reliability paths. We develop an optimization problem using a constrained Markov decision process (CMDP) to minimize network costs while ensuring the required communication reliability. The evaluation results show that RG-MAA can reduce network costs by up to 30% compared with the scheme that uses all possible paths while ensuring the required communication reliability.

Mobile Ultra-Broadband, Super Internet-of-Things and Artificial Intelligence for 6G Visions

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.235-245
    • /
    • 2023
  • Smart applications based on the Network of Everything also known as Internet of Everything (IoE) are increasing popularity as network connectivity requires rise further. As a result, there will be a greater need for developing 6G technologies for wireless communications in order to overcome the primary limitations of visible 5G networks. Furthermore, implementing neural networks into 6G will bring remedies for the most complex optimizing networks challenges. Future 6G mobile phone networks must handle huge applications that require data and an increasing amount of users. With a ten-year time skyline from thought to the real world, it is presently time for pondering what 6th era (6G) remote correspondence will be just before 5G application. In this article, we talk about 6G dreams to clear the street for the headway of 6G and then some. We start with the conversation of imaginative 5G organizations and afterward underline the need of exploring 6G. Treating proceeding and impending remote organization improvement in a serious way, we expect 6G to contain three critical components: cell phones super broadband, very The Web of Things (or IoT and falsely clever (artificial intelligence). The 6G project is currently in its early phases, and people everywhere must envision and come up with its conceptualization, realization, implementation, and use cases. To that aim, this article presents an environment for Presented Distributed Artificial Intelligence as-a-Services (DAIaaS) supplying in IoE and 6G applications. The case histories and the DAIaaS architecture have been evaluated in terms of from end to end latency and bandwidth consumption, use of energy, and cost savings, with suggestion to improve efficiency.

Dynamic ID randomization for user privacy in mobile network

  • Arijet Sarker;SangHyun Byun;Manohar Raavi;Jinoh Kim;Jonghyun Kim;Sang-Yoon Chang
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.903-914
    • /
    • 2022
  • Mobile and telecommunication networking uses temporary and random identifiers (IDs) to protect user privacy. For greater intelligence and security o the communications between the core network and the mobile user, we design and build a dynamic randomization scheme for the temporary IDs for mobile networking, including 5G and 6G. Our work for ID randomization (ID-RZ) advances the existing state-of-the-art ID re-allocation approach in 5G in the following ways. First, ID-RZ for ID updates is based on computing, as opposed to incurring networking for the re-allocation-based updates, and is designed for lightweight and low-latency mobile systems. Second, ID-RZ changes IDs proactively (as opposed to updating based on explicit networking event triggers) and provides stronger security (by increasing the randomness and frequency of ID updates). We build on the standard cryptographic primitives for security (e.g., hash) and implement our dynamic randomization scheme in the 5G networking protocol to validate its design purposes, which include time efficiency (two to four orders of magnitude quicker than the re-allocation approach) and appropriateness for mobile applications.

A Comparative Study on 3D Data Performance in Mobile Web Browsers in 4G and 5G Environments

  • Nam, Duckkyoun;Lee, Daehyeon;Lee, Seunghyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.8-19
    • /
    • 2019
  • Since their emergence in 2007, smart phones have advanced up to the point that 5G mobile communication in 2019 started to be commercialized. Accordingly, now it is possible to share 3D modeling files and collaborate by means of a mobile web. As the recently commercialized 5G mobile communication network is so useful in sharing 3D modeling files and collaborating that even large-size geometry files can be transmitted at ultra high speed with ultra low transfer delay. We examines characteristics of major 3D file formats such as STL, OBJ, FBX, and glTF and compares the existing 4G LTE (Long Term Evolution) network with the 5G NR (New Radio) mobile communication network. The loading time and packets of each format were measured depending on the mobile web browser environments. We shows that in comparison with 4G LTE, the loading time of STL and OBJ file formats were reduced as much as 6.55 sec and 9.41 sec, respectively in the 5G NR and Chrome browsers. The glTF file format showed the most efficient performance in all of the 4G/5G mobile communication networks, Chrome, and Edge browsers. In the case of STL and OBJ, the traffic was relatively excessive in 5G NR and Edge browsers. The findings of this study are expected to be utilized to develop a 3D file format that reduces the loading time in a mobile web environment.

Industrial IoT Standardization Trend of the 5G Mobile Network (5G 모바일 네트워크의 Industrial IoT 표준기술 동향)

  • Kim, K.S.;Kang, Y.H.;Kim, C.K.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.6
    • /
    • pp.13-24
    • /
    • 2021
  • Industrial networks has been developing various technologies from fieldbus technology to industrial Ethernet and time-sensitive networking. The industry expects that the 5G mobile network will solve the diverse and highly specific industrial site requirements. Accordingly, 3GPP has been developing standard functions to provide ultra-high reliability, ultra-high speed, ultra-connection, and ultra-low latency services, and 3GPP Rel-16 began developing ultra-low latency and ultra-high reliability communication functions for 5G mobile networks to support vertical industries. In this paper, we show the related standardization trends and requirements to apply industrial IoT service scenarios to 5G mobile networks, and in particular, we introduce 5G system features and extended 5G system architecture to provide time sensitive communication and time synchronization services.

Combined time bound optimization of control, communication, and data processing for FSO-based 6G UAV aerial networks

  • Seo, Seungwoo;Ko, Da-Eun;Chung, Jong-Moon
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.700-711
    • /
    • 2020
  • Because of the rapid increase of mobile traffic, flexible broadband supportive unmanned aerial vehicle (UAV)-based 6G mobile networks using free space optical (FSO) links have been recently proposed. Considering the advancements made in UAVs, big data processing, and artificial intelligence precision control technologies, the formation of an additional wireless network based on UAV aerial platforms to assist the existing fixed base stations of the mobile radio access network is considered a highly viable option in the near future. In this paper, a combined time bound optimization scheme is proposed that can adaptively satisfy the control and communication time constraints as well as the processing time constraints in FSO-based 6G UAV aerial networks. The proposed scheme controls the relation between the number of data flows, input data rate, number of worker nodes considering the time bounds, and the errors that occur during communication and data processing. The simulation results show that the proposed scheme is very effective in satisfying the time constraints for UAV control and radio access network services, even when errors in communication and data processing may occur.

Scalability of a Mobile Agents based Network Management Application

  • Rubinstein, M.G.;Duarte, O.C.M.B.;Pujolle, Guy
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.240-248
    • /
    • 2003
  • This paper analyzes mobile agent performance in network management compared to the client-server model used in the Simple Network Management Protocol (SNMP). Prototypes of an application that gathers MIB-II (Management Information Base-II) variables have been created and tested on a LAN. After acquiring implementation parameters related to network management and to the mobile agent infrastructure, simulation results have been obtained on large topologies similar in shape to the Internet. Response time results show that mobile agents perform better than SNMP when the number of managed elements ranges between two specific limits, an inferior bound and a superior one, determined by the number of messages that pass through a backbone and by the mobile agent size which grows along with MIB-II variables collected on network elements. The results also show that a significant improvement is achieved when the mobile agent returns or sends data to the management station after visiting a fixed number of nodes.

Handover Scheme between WiFi and Mobile WiMax (WiFi와 mobile WiMax간 핸드오버 방안)

  • Park, Seung-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • At present wireless internet access service is available through the 3G network, mobile WiMAX and WiFi anytime and anywhere. In this environment where there are various networks, users should be able to select specific networks depending on different situations. And it is necessary to provide mobility support between homogeneous and between heterogenous networks. Given this situation, the many proposals have been presented to link 3G, which has the largest service area among various networks, with mobile WiMAX(IEEE 802.16e), or with WiFi(IEEE 802.11). But, recently, with the increasing volume of wireless internet use and wireless internet data, due to the advents of net-book, e-book and smart phone, the service area of WiFi and mobile WiMAX has rapidly expanded. Especially, the availability of real-time application such as internet phone has led to the relative shrinking of the proportion of 3G mobile communication network giving conventional voice service, and enlargement of those of wireless internet access networks like WiFi and mobile WiMAX. This paper suggests a handover scheme based on PMIPv6, whitch support mobility between WiFi and mobile WiMAX, and minimizes handover delay. In this scheme, the mobile node has a dual stack structure composed of two interfaces-WiFi and mobile WiMAX. Since WiFi dose not support mobility, it is suggested that the mobile node have the capacity to deal with handover signaling between gateway in case of handover between homogeneous networks. This handover scheme, suggested comparing with current handovers between homogeneous networks, has proved, in its analytic evaluation, to be able to reduce handover, transmission, and signaling overhead.