• Title/Summary/Keyword: 6DOF Motor

Search Result 25, Processing Time 0.02 seconds

A Study of Advanced Spherical Motor for Improvement of Multi-DOF Motion

  • Park, Hyun-Jong;Cho, Su-Yeon;Ahn, Han-Woong;Lee, Ho-Jun;Won, Sung-Hong;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.926-931
    • /
    • 2012
  • Since robot industry growing, the machine that could move with multi-DOF has been studied in many industrial fields. Spherical motor is one of the multi-DOF machine that doesn't need gear for multi-DOF motion. Unlike conventional motor, spherical motor can not only rotate on the shaft axis (rotating motion), but tilt the shaft with 2-DOF motion (positioning motion). In the typical type of spherical motor, one coil took part in positioning motion and rotating motion at the same time. As the result, the control algorithm was complex. To solve this problem, this study proposed a novel type of coil on the stator. The coils were separated for positioning motion and rotating motion. Thus the linkage flux of rotating coil didn't be affected the positioning angle. In this paper, comparing the back-EMF of typical and novel type was conducted and the driving experiment was carried out as the positioning angle. From the experiment result, the performance of proposed spherical motor could be verified.

Development of a 6-DOF Active Vibration Isolation System Using Voice Coil Motor (VCM을 이용한 6자유도 능동형 제진시스템 개발)

  • Gil, Hyeong-Gyeun;Kim, Kwang-San
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.637-643
    • /
    • 2010
  • The paper is about the development of 6-DOF active vibration isolation systems using VCM. Firstly, formulate the vertical 3-DOF mathematical model under eccentric load, and compare the model with the case in which the center of mass is located at the centroid. And then, complete the 6-DOF mathematical model by formulating the horizontal 3-DOF mathematical model. Find main parameters by comparing the result of the frequency response test with simulation result on the model. Finally, achieve the performance of vibration isolation by applying loop shaping approach & feedforward controller.

Design and Analysis of Double Excited 3-Degree-of-Freedom Motor for Robots

  • Kwon, Byung-Il;Kim, Young-Boong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.618-625
    • /
    • 2011
  • This paper presents a double excited three degree-of-freedom (3DOF) motor. The proposed 3DOF motor is designed with a laminated structure, making it easy to manufacture. In addition, it has windings on the stator and rotor, and does not require an expensive permanent magnet. We explain the structure, principle of motion, and design of the proposed motor, and perform an analysis of the static characteristics using the two- and three-dimensional finite element methods (3D FEM). The feasibility of 3D FEM analysis is confirmed by comparing the 3D FEM analysis and experimental results for the rolling and pitching motion. We also confirm the occurrence of holding torque in every motion.

Study on the Pose Control of a 6 DOF Simulator with Pneumatic Cylinder Driving Apparatus (공기압실린더 구동장치를 이용한 6자유도 시뮬레이터의 자세제어에 관한 연구)

  • Jeong, J.H.;Ji, S.W.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 2007
  • In this study, 6-DOF simulator using pneumatic cylinder driving apparatus was manufactured because a pneumatic cylinder driving apparatus is superior to electric driving motor and hydraulic actuator, which used in traditional 6-DOF simulator, in competitive price and acceleration performance, and, 6-DOF motion can be realized at a low price in case that relatively low load is imposed on the simulator. The possible range of pose control of the simulator was investigated by inverse kinematics, and, it was controlled by a linear controller derived from linear model of the simulator. The Experimental results show that the simulator follows given coordinate well.

  • PDF

Implementation of Flight Simulator using 6DOF Motion Platform

  • Park, Myeong-Chul;Choi, Duk-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.17-23
    • /
    • 2018
  • In this paper, we implemented a flight posture simulator that intuitively understands aircraft flight posture and visualizes the principle of motion. The proposed system operates the 6 - axis motion platform according to the change of the navigation information and transmits the flight attitude to the simulator using the gyro sensor. A gyro sensor and an acceleration sensor are used together to analyze the attitude of the aircraft. The reason is that the gyro sensor has a cumulative error in the integration process. And the accelerometer sensor was compensated by using the complementary filter because noise was serious due to short term vibration. Using the compensated sensor information, the motion platform is operated by calculating the angle to be transmitted to the 6-axis motor. And visualization result is implemented using OpenGL. The results of this study can be used as teaching materials for students related to aviation in the future.

Practical Design and Implementation Methodology for Disturbance Rejection Controller (외란 제거 제어기의 실제적인 설계 및 구현 방법)

  • Yeo Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.37-47
    • /
    • 2005
  • This Paper proposes a practical design and implementation methodology for a disturbance rejection controller. In a 2 Degree-Of-Freedom (DOF) structure, disturbance rejection performance can be improved without a high gain in forward-loop controller which might cause unwanted side-effects in conventional controller. But, since design methodology of 2 DOF controller is originally derived from the 2 DOF theory, it is not easy to utilize fer various industrial applications. Disturbance observer is a simple, but very effective 2 DOF controller. In this paper, practical issues are discussed from basic idea of DOB to technical procedure for design and implementation. Additionally, a methods and their examples of experimental modeling are explained. The proposed method is demonstrated by two examples of linear-type motor systems.

  • PDF

Design and Hardware Integration of Humanoid Robot Platform KHR-2 (인간형 로봇 플랫폼 KHR-2 의 설계 및 하드웨어 집성)

  • Kim, Jung-Yup;Park, Ill-Woo;Oh, Jun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.579-584
    • /
    • 2004
  • In this paper, we present the mechanical, electrical system design and system integration of controllers including sensory devices of the humanoid, KHR-2 (KAIST Humanoid Robot - 2). We have developed KHR-2 since 2003. Total number of DOF of KHR-2 is 41. Each arm including a hand has 11 DOF and each leg has 6 DOF. Head and trunk also has 6 DOF and 1 DOF respectively. In head, two CCD cameras are used for eye. To control all axes efficiently, distributed control architecture is used to reduce computation burden of main controller and to expand devices easily. So we developed the sub-controller as a servo motor controller and a sensor interfacing devices using microprocessor. The main controller attached its back communicates with sub-controllers in real-time by CAN (Controller Area Network) protocol. We used Windows XP as its OS (Operation System) for fast development of main control program and easy extension of peripheral devices. And RTX HAL extension commercial software is used to realize the real-time control in Windows XP environment.

  • PDF

Tip Position Control of Flexible Robot Manipulators Using 2-DOF Controller with Sliding Mode (슬라이딩 모드를 가진 2-자유도 제어기를 이용한 유연한 로봇 조작기의 끝점 위치 제어)

  • 신효필;이종광;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.471-477
    • /
    • 2000
  • The position control accuracy of a robot arm is significantly deteriorated when a long arm robot is operated at a high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system should be designed with its elastic modes taken into account. In this paper, the tip position control scheme of a one-link flexible manipulator using 2-DOF controller with sliding mode is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and a CCD camera as a vision sensor for on-line measuring the tip deflection of the flexible m. Simulation and experimental results of the flexible manipulator with a proposed controller are provided to show the effectiveness of the controller.

  • PDF

Design of a 6-DOF Parallel Haptic Rand Controller Consisting of 5-Bar Linkages and Gimbal Mechanisms (5절링크와 짐벌기구로 구성된 병렬형 6자유도 햅틱 핸드컨트롤러의 설계)

  • Ryu, Dong-Seok;Sohn, Won-Sun;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • A haptic hand controller (HHC) operated by the user’s hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. In this paper, a 3-DOF hand controller is first presented, in which all the actuators are mounted on the fixed base by combining a 5-bar linkage and a gimbal mechanism. The 6-DOF HHC is then designed by connecting these two 3-DOF devices through a handle which consists of a screw and nut. Analysis using performance index is carried out to determine the dimensions of the device. The HHC control system consists of the high-level controller for kinematic and static analysis and the low-level controller for position sensing and motor control. The HHC used as a user interface to control the mobile robot in the virtual environment is given as a simple application.

Development of A Omni-directional Flying Robot (전방향 소형비행로봇의 개발)

  • 이호길;원대희;박윤수;양광웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.302-305
    • /
    • 2003
  • In this paper, dynamic behaviors of a small-sized flying robot with 4 rotors propelled by DC motor are discussed, and a control scheme based on the dynamic model to make stable flying motions, i.e., hovering, take-off, cruising behavior, etc. is proposed. The experimental results via some flying tests show good performances for practical use. The flying robot with 6DOF is controlled only 4 DOF, and the rest of two DOF are remained under the dynamic constraints. How to give the stability of all positions and orientations and to make the omni-directional motions in spite of such restrictions is analyzed. The proposed control scheme composes of two stages. First, PD control inputs for the trust-force and orientation are calculated, next the control inputs are distributed to each rotor by using a sort of Jacobian matrix. To design and control of a low cost - small sized flying robot, vibrated gyro sensor, cheap accelerometer, IR, and ultra sonic sensors are selected.

  • PDF