• 제목/요약/키워드: 60GHz communication

Search Result 126, Processing Time 0.027 seconds

A 60GHz Wireless Cooperative Communication System Based on Switching Beamforming

  • Shi, Wei;Wang, Jingjing;Liu, Yun;Niu, Qiuna;Zhang, Hao;Wu, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1590-1610
    • /
    • 2016
  • The challenge of penetrating obstacles along with impact from weak multipath effects makes 60GHz signal very difficult to be transmitted in non-line of sight (NLOS) channel. So 60GHz system is vulnerable to obstructions and thus likely results in link interruption. While the application of cooperative technology to solve link blockage problemin 60GHz system should consider the characteristic of directional transmission for 60GHz signal. Therefore in this paper a system is proposed to solve the link blockage problem in 60GHz NLOS communication environment based on the concept of cooperation and also the beamforming technology, which is the basis of directional transmission for 60GHz communication system. The process of anti-blockage solution with cooperative communication is presented in detail, and the fast switching and recovery schemes are well designed. The theoretical values of symbol error rate (SER) using decode and forward (DF) cooperation and amplify and forward (AF) cooperation are presented respectively when the common channel interference exists. Simulation results demonstrate that the performance based on DF cooperation is better than the performance based on AF cooperation when directional transmission is used.

The Development of the Temperature Compensation Equipment to minimize Error in the Wireless Transmission System at 60GHz Band (60GHz대역 무선통신장애 해결을 위한 온도보상장치 개발)

  • Myung, Byung-Soo;Ku, Seong-Deag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • Usually, propagation attenuation of millimeter wave occurs by rainfall, snowfall, temperature, effect of pressure of air. In 60GHz wave band wireless communication network, temperature change becomes big factor of propagation loss department. Also, temperature change causes disturbance of 60GHz frequency at transceiver. In this study, we used 60GHz transceiver and found propagation loss of wireless path and operating frequency disturbance characteristics. In transceiver that there is no temperature compensated device, operating frequency of TX changed by 60.865GHz at temperature of $-5^{\circ}C$, and appeared by 60.730GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 100MHz, greatly. But, in transceiver that there is temperature compensated device, operating frequency of TX changed by 60.830GHz at temperature of $-5^{\circ}C$, and appeared by 60.710GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 20MHz. According to these result, we constructed between buildings examination wireless site for point to point wireless communication using 60GHz band transceivers who have do temperature compensated device, and investigated data transmission characteristics about ambient temperature change. Therefore, if use transceiver that have temperature compensated device, may overcome the wireless transmission error in 60GHz band wireless communication LAN networks despite of ambient temperature change.

  • PDF

The Implementation of UWB and 60GHz Band Wireless Communication Technology for Wireless Home Network and Their Market Prospect (무선 홈네트워크 구현을 위한 UWB와 60GHz 대역 무선 통신 기술의 활용방안과 시장전망)

  • Hong, Seok-Soo;Park, Jong-Hun;Lee, Dong-Joo;Lee, Jae-Sup;Hong, Jung-Wan;Lie, Chang-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.2
    • /
    • pp.195-212
    • /
    • 2008
  • The demand of wireless communication system is increasing due to the development of computers and other digital media appliances. In particular, new wireless communication technology is necessary for implementation of home network since a lot of data transmission is occurred. Recently, two wireless communication technologies, Ultra Wide Band(UWB) and 60GHz band wireless communication technology, have being developed for high-speed data transmission and Wireless Personal Area Network(WPAN). In this paper, we study the present development condition of these two technologies and a role of them in home network. We also suggest the method to implement the home network using all wireless communication technologies. At the end, we outlook the market of WPAN and High Definition Multimedia Interface(HDMI).

  • PDF

A Group-aware Multicast Scheme in 60GHz WLANs

  • Park, Hyun-Hee;Kang, Chul-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.1028-1048
    • /
    • 2011
  • The relation of multicast transmission and directional antennas is an open problem that has been debated for a long period of time. In this paper, we propose a group-aware multicast scheme of efficient multicast communication using the directional antennas for 60GHz millimeter wave wireless networks. For this purpose, we first derive the relation among beamwidth, distance between devices and most suitable data rate in the 60GHz frequency-based wireless network. In addition, for the dynamic beamforming of multicast communication, the x and y coordinates of any point with sender device at the center is generated, and a best-chosen group is deduced based on the Euclidean distance. Then the most suitable data rate for the group is obtained using the law of cosine. Using the Standard IEEE 802.11ad MAC protocol as an example, extensive simulation results demonstrate that the proposed scheme outperforms the existing multicast communication schemes with directional antennas under different situations.

Performance of Relaying Protocols in 60 GHz Wireless Networks (60GHz 채널 환경에서의 릴레이를 이용한 중계 시스템 연구)

  • Lee, Yong-Wook;Kang, Dong-Hoon;Park, Hyo-Bae;Oh, Wang-Rok
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.3-5
    • /
    • 2009
  • In this paper, we exploit the cooperative diversity relay protocol to compensate for defects of wireless communication in 60 GHz. We derive and proof results of the numerical expressions versus various scenarios using the computer simulations. Optimal location and scaling factor of relay are presented through analysis of performances and compared between direct-path and time diversity transmission. Consequently, our results confirm that cooperative diversity relay protocol is an effective mean of enhancing the performance of wireless communication systems in 60 GHz.

  • PDF

Frequency Band Selection for WLAN Using Multiple Bands of 5 GHz/60 GHz (5 GHz/60 GHz 다중대역을 사용하는 WLAN을 위한 대역이동 결정 기법)

  • Jeong, Tae Hun;Jeong, Dong Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.718-728
    • /
    • 2014
  • The multi-band wireless local area network (WLAN) using 60 GHz band and the lower band (typically 2.4 GHz/5 GHz band) can support the very high data rate in short-distance communication using 60 GHz band and the long-distance communication using the lower band. For heightening the efficiency of multi-band WLAN, an band selection scheme is a necessity. In this paper, we propose an effective frequency band selection scheme for multi-band WLANs. By using computer simulation with NS-3, we show the performance of the proposed schemes when the stations suffer from the human blockage and the log-normal shadowing.

Design and Performance Analysis of 60GHz Wireless Communication System for Low Power Consumption and High Link Quality (저전력 및 고품질의 60GHz대역 무선 통신 시스템 설계와 성능 분석)

  • Bok, Junyeong;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.2
    • /
    • pp.209-216
    • /
    • 2013
  • In this paper, we design and analyze digital retrodirective array antenna (RDA) system in 60GHz wireless communication for low power consumption and high quality. Digital RDA can automatically make beam toward source without information about the direction of incoming signal, this system is able to do low power communication thanks to increased signal to interference noise ratio (SINR) because making the beam toward source can reduce interference signals. The frequency offset seriously arises when millimetric wave band like 60GHz is used to communicate for high-speed transmission. The proposed system is robustly designed to frequency offset through designing digital phase lock loop in order to solve the problem of frequency offset. In this paper, we analyze the performance of the proposed system according to the number of array antenna and frequency offset. striking space.

Study of Microstrip Patch Antenna for 5 GHz (5 GHz 대역의 마이크로스트립 패치 안테나 특성 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Because of an rapid increase of using a wireless Internet, the originally used communication of 2.4 GHz band was saturated and crossed and there were some problems. According to this, the development of a wireless Internet technology of 5 GHz Band proceeded. In the thesis we researched a Square Slot Microstrip Patch Antenna available in 5 GHz band of wireless communication. The research designed and analyzed the Antenna through HFSS. Ultimately, we compared and analyzed made Antenna through a Network Analyzer.