• Title/Summary/Keyword: 6.5 mm cancellous screw

Search Result 18, Processing Time 0.023 seconds

Free Hand Insertion Technique of S2 Sacral Alar-Iliac Screws for Spino-Pelvic Fixation : Technical Note, Acadaveric Study

  • Park, Jong-Hwa;Hyun, Seung-Jae;Kim, Ki-Jeong;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.578-581
    • /
    • 2015
  • A rigid spino-pelvic fixation to anchor long constructs is crucial to maintain the stability of long fusion in spinal deformity surgery. Besides obtaining immediate stability and proper biomechanical strength of constructs, the S2 alar-iliac (S2AI) screws have some more advantages. Four Korean fresh-frozen human cadavers were procured. Free hand S2AI screw placement is performed using anatomic landmarks. The starting point of the S2AI screw is located at the midpoint between the S1 and S2 foramen and 2 mm medial to the lateral sacral crest. Gearshift was advanced from the desired starting point toward the sacro-iliac joint directing approximately $20^{\circ}$ angulation caudally in sagittal plane and $30^{\circ}$ angulation horizontally in the coronal plane connecting the posterior superior iliac spine (PSIS). We made a S2AI screw trajectory through the cancellous channel using the gearshift. We measured caudal angle in the sagittal plane and horizontal angle in the coronal plane. A total of eight S2AI screws were inserted in four cadavers. All screws inserted into the iliac crest were evaluated by C-arm and naked eye examination by two spine surgeons. Among 8 S2AI screws, all screws were accurately placed (100%). The average caudal angle in the sagittal plane was $17.3{\pm}5.4^{\circ}$. The average horizontal angle in the coronal plane connecting the PSIS was $32.0{\pm}1.8^{\circ}$. The placement of S2AI screws using the free hand technique without any radiographic guidance appears to an acceptable method of insertion without more radiation or time consuming.

Torque and mechanical failure of orthodontic micro-implant influenced by implant design parameters (교정용 마이크로 임플란트의 디자인이 토오크와 파절강도에 미치는 영향)

  • Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.37 no.3 s.122
    • /
    • pp.171-181
    • /
    • 2007
  • Objective: The present study was aimed at an analytical formulation of the micro-implant related torque as a function of implant size, i.e. the diameter and length, screw size, and the bony resistance at the implant to bone interface. Methods: The resistance at the implant to cancellous bone interface $(S_{can})$ was assumed to be in the range of 1.0-2.5 MPa. Micro-implant model of Absoanchor (Dentos Inc. Daegu, Korea) was used in the course of the analysis. Results: The results showed that the torque was a strong function of diameter, length, and the screw height. As the diameter increased and as the screw size decreased, the torque index decreased. However the strength index was a different function of the implant and bone factors. The whole Absoanchor implant models were within the safe region when the resistance at the implant/cancellous bone $(=S_{can})$ was 1.0 or less. Conclusion: For bone with $S_{can}$ of 1.5 MPa, the cervical diameter should be greater than 1.5 mm if micro-implant models of 12 mm long are to be placed. For $S_{can}$ of 2.0 MPa, micro-implant models of larger cervical diameter than 1.5 mm were found to be safe only if the endosseous length was less than 8 mm.

Evaluation of the stress distribution in the external hexagon implant system with different hexagon height by FEM-3D (임플란트 hexagon 높이에 따른 임플란트와 주위 조직의 응력분포 평가)

  • Park, Seong-Jae;Kim, Joo-Hyeun;Kim, So-Yeun;Yun, Mi-Jung;Ko, Sok-Min;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.36-43
    • /
    • 2012
  • Purpose: To analyze the stress distribution of the implant and its supporting structures through 3D finite elements analysis for implants with different hexagon heights and to make the assessment of the mechanical stability and the effect of the elements. Materials and methods: Infinite elements modeling with CAD data was designed. The modeling was done as follows; an external connection type ${\phi}4.0mm{\times}11.5mm$ Osstem$^{(R)}$ USII (Osstem Co., Pusan, Korea) implant system was used, the implant was planted in the mandibular first molar region with appropriate prosthetic restoration, the hexagon (implant fixture's external connection) height of 0.0, 0.7, 1.2, and 1.5 mm were applied. ABAQUS 6.4 (ABAQUS, Inc., Providence, USA) was used to calculate the stress value. The force distribution via color distribution on each experimental group's implant fixture and titanium screw was studied based on the equivalent stress (von Mises stress). The maximum stress level of each element (crown, implant screw, implant fixture, cortical bone and cancellous bone) was compared. Results: The hexagonal height of the implant with external connection had an influence on the stress distribution of the fixture, screw and upper prosthesis and the surrounding supporting bone. As the hexagon height increased, the stress was well distributed and there was a decrease in the maximum stress value. If the height of the hexagon reached over 1.2mm, there was no significant influence on the stress distribution. Conclusion: For implants with external connections, a hexagon is vital for stress distribution. As the height of the hexagon increased, the more effective stress distribution was observed.

A STUDY ON THE STRESS ANALYSIS OF THREE ROOT-FORM IMPLANTS WITH FNITE ELEMENT ANALYSIS (유한요소분석법을 이용한 치근형 임플랜트의 응력분포에 관한 연구)

  • Moon, Byoung-Hwa;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.1
    • /
    • pp.129-150
    • /
    • 1993
  • Since the restoration or masticatory function is the most important aim of implants, it should be substituted for the role of natural teeth and deliver the stress to the bone under the continous load during function. In natural teeth, stress distribution can be obtained through enamel, dentin and cementum and the elasticity of the periodontal ligament play a role of buffering action. In contrast, implant prosthesis has a very unique characteristics that it delvers the load directly to bone through the implant and superstructure. This fact arise the needs to evaluate the stress distribution of the implant in the mechnical aspects, which has a similar role of natural teeth but different pathway of stress. With 3 kinds of implant in prevalent use, 2 types of experimental PEA implant models were made, axisymmetric and 2-dimensional type. In axisymmetric model, the stiffness of the part including the prosthesis and implant which extrude out of bony surface could be calculated with displacement of the superstructure un er 100N vertical load and then damping effects could be determined through this stiffness. In axisymmetric FEA model, load to the bone could be deduced by evaluation the stress distribution of the designed surface under the 100N vertical force and in 2-dimensional model, 100N eccentric vertical load and 20N horizontal loda. The result are as follows. 1. In every implant, stress to the bone tends to be concenturated on the cortical bone. 2. Though the stress of the cancellous bone is larger at the apex of implants, it is less compared with cortical bone. 3. Under 20N horizontal load, stress of the left and right sides of implant shows a symmetrical pattern. But under 100N eccentric vertical load, loaded side shows much larger stress value. 4. In the 1mm interface, stress distribution among implants tend to have a similar pattern. But under 20N horizontal load apposite side of being loaded shows less stress in IMZ. 5. In the case of screw type implant, stress tends to vary along with screw shape. 6. According to the result determined with microstrain, cancellous bone id generally under the condition of overload, while cortical bone is usually within the limitation of physiologic load. 7. In the Branemark implant, maximum stress to the cortical bone is larger than any other implant except for the condition of 20N horizontal force and 0.05mm interface. 8. Damping effects of implants is maximum in IMZ.

  • PDF

Arthroscopically assisted Operative Treatment of Tibial Plateau Fracture (관절경을 이용한 경골 고평부 골절에 대한 수술적 치료)

  • Byun, Jae-Yong;Kim, Bo-Hyun;Kang, Shin-Taek;Whang, Chan-Ha
    • Journal of the Korean Arthroscopy Society
    • /
    • v.10 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • Purpose: We evaluated the results of operative treatment of tibial plateau fractures using both arthroscopy and fluoroscopy. Materials and Methods: From May 1999 to February 2003, tibial plateau fractures were treated with arthroscopy. Tweenty seven patients are followed up over two years and the average follow-up period was fourty one months. We classified the fractures according to the Schatzker classification. We reduced the fracture over 2mm depression and displacement on articular surface in simple radiologic finding. Firstly, we treated the associated injuries and reduced the fractures using Steinmann pins. Then, we accomplished internal fixation or external fixation. Both the postoperative clinical and radiological results were evaluated by Rasmussen system. Results: In all tweenty seven cases, the fractures were healed completely in average fourty one months. According to Rasmussen classification, we obtained the excellent or good results in 23 cases. An average range of motion was between 2.5 degrees and 130 degrees. However, postoperative infection developed in one case and the other had loss of reduction. Conclusions: We consider that arthroscopically assisted operative treatment of tibial plateau fracture is a useful method. We can reduce joint surface correctly and treat associated injuries with arthroscopy. There are less complications.

  • PDF

The Formation of Extragraft Bone Bridging after Anterior Cervical Discectomy and Fusion : A Finite Element Analysis

  • Kwon, Shin Won;Kim, Chi Heon;Chung, Chun Kee;Park, Tae Hyun;Woo, Su Heon;Lee, Sung-Jae;Yang, Seung Heon
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.611-619
    • /
    • 2017
  • Objective : In addition to bone bridging inside a cage or graft (intragraft bone bridging, InGBB), extragraft bone bridging (ExGBB) is commonly observed after anterior cervical discectomy and fusion (ACDF) with a stand-alone cage. However, solid bony fusion without the formation of ExGBB might be a desirable condition. We hypothesized that an insufficient contact area for InGBB might be a causative factor for ExGBB. The objective was to determine the minimal area of InGBB by finite element analysis. Methods : A validated 3-dimensional, nonlinear ligamentous cervical segment (C3-7) finite element model was used. This study simulated a single-level ACDF at C5-6 with a cylindroid interbody graft. The variables were the properties of the incorporated interbody graft (cancellous bone [Young's modulus of 100 or 300 MPa] to cortical bone [10000 MPa]) and the contact area between the vertebra and interbody graft (Graft-area, from 10 to $200mm^2$). Interspinous motion between the flexion and extension models of less than 2 mm was considered solid fusion. Results : The minimal Graft-areas for solid fusion were $190mm^2$, $140mm^2$, and $100mm^2$ with graft properties of 100, 300, and 10000 MPa, respectively. The minimal Graft-areas were generally unobtainable with only the formation of InGBB after the use of a commercial stand-alone cage. Conclusion : ExGBB may be formed to compensate for insufficient InGBB. Although various factors may be involved, solid fusion with less formation of ExGBB may be achieved with refinements in biomaterials, such as the use of osteoinductive cage materials; changes in cage design, such as increasing the area of polyetheretherketone or the inside cage area for bone grafts; or surgical techniques, such as the use of plate/screw systems.

Acute Type V Acromioclavicular Injury Treated by the Modified Bosworth Technique (급성 제 5형 견봉쇄골관절 탈구의 치료)

  • Kim Seung-Key;Yi Sang-Hoon;Park Jong Beom;Bahk, Won-Jong;Jang Il-Seok;Chang Han
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.2
    • /
    • pp.126-132
    • /
    • 1999
  • Purpose : To evaluate the functional and radiographic outcome of the modified Bosworth method in the surgical treatment of acute type V acromioclavicular joint dislocation. Materials and Methods: From June 1995 to May 1998, 20 patients were operated on for acute and complete acromioclavicular dislocation(Rockwood type V). The operative technique includes fixation of the coracoclavicular joint with Bosworth screw or 6.5mm cancellous screw and imbrication of trapezius and deltoid muscles. The average age was 34 years(range, 19 to 51 years). These 20 patients with an average follow-up of 18months, were evaluated clinically using the UCLA scoring system. Additional radiographical assessment was performed with stress radiographs. Results: Excellent or good clinical results were obtained in 95%(19 cases). And the average coracoclavicular interval ratio was decreased from 3.31(2.2-6.0) to 1.13(1-1.4) in stress radiographs. There were 4 cases of hetero­topic calcification postoperatively but there was no correlation with clinical result. Posttraumatic A-C joint arthritis was developed in one case. In that case, the distal clavicular resection was done under the arthroscopic technique. Conclusion: The severe displacement observed with type V injuries is incompatible with normal shoulder function if the shoulder is left in its displaced position. In type V injuries, significant damage to the deltoid and trapezius musculature and overlying fascia occurs, therefore open reduction and good fixation must be obtained with imbrication of trapezius and deltoid muscles. In our type V acute complete acromioclavicular dislocation, the modified Bosworth technique provides excellent results with a low complication rate.

  • PDF

Factors influencing primary stability of miniplate anchorage: a three-dimensional finite element analysis (미니플레이트의 골내 고정원 적용 시 초기 안정성에 영향을 주는 요인에 대한 3차원 유한요소법적 연구)

  • Lee, Nam-Ki;Choi, Dong-Soon;Jang, In-San;Cha, Bong-Kuen
    • The korean journal of orthodontics
    • /
    • v.38 no.5
    • /
    • pp.304-313
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the stress distribution in bone and displacement distribution of the miniscrew according to the length and number of the miniscrews used for the fixation of miniplate, and the direction of orthodontic force. Methods: Four types of finite element models were designed to show various lengths (6 mm, 4 mm) and number (3, 2) of 2 mm diameter miniscrew used for the fixation of six holes for a curvilinear miniplate. A traction force of 4 N was applied at $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ to an imaginary axis connecting the two most distal unfixed holes of the miniplate. Results: The smaller the number of the miniscrew and the shorter the length of the miniscrew, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. Most von Mises stress in the bone was absorbed in the cortical portion rather than in the cancellous portion. The more the angle of the applied force to the imaginary axis increased, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. The maximum von Mises stress in the bone and maximum displacement of the miniscrew were measured around the most distal screw-fixed area. Condusions: The results suggest that the miniplate system should be positioned in the rigid cortical bone with 3 miniscrews of 2 mm diameter and 6 mm length, and its imaginary axis placed as parallel as possible to the direction of orthodontic force to obtain good primary stability.