• Title/Summary/Keyword: 6-degree of freedom

Search Result 432, Processing Time 0.024 seconds

Experimental analyses of dynamical systems involving shape memory alloys

  • Enemark, Soren;Savi, Marcelo A.;Santos, Ilmar F.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1521-1542
    • /
    • 2015
  • The use of shape memory alloys (SMAs) in dynamical systems has an increasing importance in engineering especially due to their capacity to provide vibration reductions. In this regard, experimental tests are essential in order to show all potentialities of this kind of systems. In this work, SMA springs are incorporated in a dynamical system that consists of a one degree of freedom oscillator connected to a linear spring and a mass, which is also connected to the SMA spring. Two types of springs are investigated defining two distinct systems: a pseudoelastic and a shape memory system. The characterisation of the springs is evaluated by considering differential calorimetry scanning tests and also force-displacement tests at different temperatures. Free and forced vibration experiments are made in order to investigate the dynamical behaviour of the systems. For both systems, it is observed the capability of changing the equilibrium position due to phase transformations leading to hysteretic behaviour, or due to temperature changes which also induce phase transformations and therefore, change in stiffness. Both situations are investigated by promoting temperature changes and also pre-tension of the springs. This article shows several experimental tests that allow one to obtain a general comprehension of the dynamical behaviour of SMA systems. Results show the general thermo-mechanical behaviour of SMA dynamical systems and the obtained conclusions can be applied in distinct situations as in rotor-bearing systems.

Dynamic properties of a building with viscous dampers in non-proportional arrangement

  • Suarez, Luis E.;Gaviria, Carlos A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1241-1260
    • /
    • 2015
  • Any rational approach to define the configuration and size of viscous fluid dampers in a structure should be based on the dynamic properties of the system with the dampers. In this paper we propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for underdamped and overdamped systems. It is shown that the commonly used formula to define the equivalent natural frequency is not applicable for this type of system and for others where the damping matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the vibration frequencies of the structure. The significance of the new equivalent natural frequencies is expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective to study the effect of viscous dampers on the dynamic properties of a structure.

Optimal control formulation in the sense of Caputo derivatives: Solution of hereditary properties of inter and intra cells

  • Muzamal Hussain;Saima Akram;Mohamed A. Khadimallah;Madeeha Tahir;Shabir Ahmad;Mohammed Alsaigh;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.611-623
    • /
    • 2023
  • This work considered an optimal control formulation in the sense of Caputo derivatives. The optimality of the fractional optimal control problem. The tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. In addiltion, existence and local stability of fixed points are investigated for discrete model. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Our technique likewise allows the advancement of results, such as return time to baseline that are unrealistic with current model solvers.

Evaluation of Effective Jamming/Deception Area of Active Decoy against Ground Tracking Radars on Dynamic Combat Scenarios (동적 교전 시나리오에서 지상 추적 레이다에 대한 이탈방사체의 효과적 재밍/기만 영역 분석)

  • Rim, Jae-Won;Lee, Sangyeob;Koh, Il-Suek;Baek, Chung;Lee, Seungsoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.269-278
    • /
    • 2017
  • We analyze the jamming/deception performance of an active decoy against ground tracking radars on dynamic combat scenarios. Based on the movement and the interference flow of an airborne platform, the trajectories of the active decoy is accurately calculated by solving 6-degree of freedom equations of motion. On realistic combat scenarios, numerical simulations are examined to analyze the jamming performance of the decoy for various movements of the platform and RF specifications of the active decoy. Effective jamming/deception area against the ground tracking radars is estimated from the simulation.

Modeling and controller design of crabbing motion for auto-berthing (선박 자동접안을 위한 순수 횡 이동 모델링 및 제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.56-64
    • /
    • 2013
  • Crabbing motion is the pure sway motion of a ship without surge velocity. Thus, it can be applied to a berthing operation. Crabbing motion is induced by a peculiar operation method called the push-pull mode. The push-pull mode is induced by using a combination of the main propeller and side thruster. Two propellers generating the same amounts of thrust and rotating in opposite directions produce some yawing moment on a vessel but do not induce longitudinal motion. With the additional operation of side thrusters, the push-pull mode is used to induce a large amount of lateral force. In this paper, three-degree-of-freedom equations of motion such as for the surge, sway, and yaw are constructed for the crabbing motion. Based on these equations of motion, a feedback linearization control method is applied to auto-berthing control for a twin-screw ship with side thrusters. The controller can deal with the nonlinearity of a system, which is present in the berthing maneuver of a twin screw ship. A simulation of the auto-berthing of a ship is performed to validate the performance of the designed controller.

An Analysis about Amount of Students' Circulation based on the Flow Coefficients in Middle School managed by Variation Type (유동계수 산정에 기초한 교과교실형 운영 중학교 학생 동선이동량 분석)

  • Jeong, Joo-Seong
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.6
    • /
    • pp.21-28
    • /
    • 2018
  • To compare the physical quantity of students circulation along the moving path during recess of a variation type operation middle school, five points were actually observed. The flow coefficient for these points was calculated, and the change in flow coefficient was verified and tracked over time. During the operation of the classroom, the characteristics of crowdedness and congestion time depending on the physical conditions of the frequently moved paths were shown. Even in the same corridor, the difference between the flow coefficient and the congestion time of the corridor facing the open space and the blocked space was noticeably different. As a result, detailed factors such as free walking speed, the degree of freedom of passing and the possibility of collision were also identified. This means that detailed countermeasures for the student's path should be considered first when planning the moving space of a variation type school, and identifying the characteristics of these factors could be used as useful basic materials for developing various models of classroom space.

Fragility analysis of R/C frame buildings based on different types of hysteretic model

  • Borekci, Muzaffer;Kircil, Murat S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.795-812
    • /
    • 2011
  • Estimation of damage probability of buildings under a future earthquake is an essential issue to ensure the seismic reliability. Fragility curves are useful tools for showing the probability of structural damage due to earthquakes as a function of ground motion indices. The purpose of this study is to compare the damage probability of R/C buildings with low and high level of strength and ductility through fragility analysis. Two different types of sample buildings have been considered which represent the building types mentioned above. The first one was designed according to TEC-2007 and the latter was designed according to TEC-1975. The pushover curves of sample buildings were obtained via pushover analyses. Using 60 ground motion records, nonlinear time-history analyses of equivalent single degree of freedom systems were performed using bilinear hysteretic model and peak-oriented hysteretic model with stiffness - strength deterioration for each scaled elastic spectral displacement. The damage measure is maximum inter-story drift ratio and each performance level considered in this study has an assumed limit value of damage measure. Discrete damage probabilities were calculated using statistical methods for each considered performance level and elastic spectral displacement. Consequently, continuous fragility curves have been constructed based on the lognormal distribution assumption. Furthermore, the effect of hysteresis model parameters on the damage probability is investigated.

On the response of base-isolated buildings using bilinear models for LRBs subjected to pulse-like ground motions: sharp vs. smooth behaviour

  • Mavronicola, Eftychia;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1223-1240
    • /
    • 2014
  • Seismic isolation has been established as an effective earthquake-resistant design method and the lead rubber bearings (LRBs) are among the most commonly used seismic isolation systems. In the scientific literature, a sharp bilinear model is often used for capturing the hysteretic behaviour of the LRBs in the analysis of seismically isolated structures, although the actual behaviour of the LRBs can be more accurately represented utilizing smoothed plasticity, as captured by the Bouc-Wen model. Discrepancies between these two models are quantified in terms of the computed peak relative displacements at the isolation level, as well as the peak inter-storey deflections and the absolute top-floor accelerations, for the case of base-isolated buildings modelled as multi degree-of-freedom systems. Numerical simulations under pulse-like ground motions have been performed to assess the effect of non-linear parameters of the seismic isolation system and characteristics of both the superstructure and the earthquake excitation, on the accuracy of the computed peak structural responses. Through parametric analyses, this paper assesses potential inaccuracies of the computed peak seismic response when the sharp bilinear model is employed for modelling the LRBs instead of the more accurate and smoother Bouc-Wen model.

Study on Satellite Vibration Control using Adaptive Control Scheme

  • Oh, Se-Boung;Oh, Choong-Seok;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.1-16
    • /
    • 2005
  • Adaptive control methods are studied for the Satellite to isolate vibration in spite of the nonlinear system dynamics and parameter uncertainties of disturbance. First, a centralized control scheme is developed based on the particle swarm optimization(PSO) algorithm and feedback theory to automatically tune controller gains. A simulation study of a 3 degree-of-freedom device was conducted to evaluate the performance of the proposed control scheme. Next, since a centralized control scheme is hard to construct model dynamics and not goad at performance when controller and systems environment are easily changed, a decentralized control scheme is presented to avoid these defects of the centralized control scheme from the point of view of production and maintenance. It is based on the adaptive control methodologies to find PID controller parameters. Experiment studies were conducted to apply the adaptive control scheme and evaluate the performance of the proposed control scheme with those of the conventional control schemes.

Damage potential of earthquake records for RC building stock

  • Ozmen, Hayri Baytan;Inel, Mehmet
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1315-1330
    • /
    • 2016
  • This study investigates ground motion parameters and their damage potential for building type structures. It focuses on low and mid-rise reinforced concrete buildings that are important portion of the existing building stock under seismic risk in many countries. Correlations of 19 parameters of 466 earthquake records with nonlinear displacement demands of 1056 Single Degree of Freedom (SDOF) systems are investigated. Properties of SDOF systems are established to represent RC building construction practice. The correlation of damage and ground motion characteristics is examined with respect to number of story and site classes. Equations for average nonlinear displacement demands of considered RC buildings are given for some of the ground motion parameters. Velocity related parameters are generally found to have better results than the acceleration, displacement and frequency related ones. Correlation of the parameters may be expected to decrease with increasing intensity of seismic event. Velocity Spectrum Intensity and Peak Ground Velocity have been found to have the highest correlation values for almost all site classes and number of story groups. Common parameter of Peak Ground Acceleration has lower correlation with damage when compared to them and some other parameters like Effective Design Acceleration and Characteristic Intensity.