• Title/Summary/Keyword: 6-OHDA

Search Result 75, Processing Time 0.028 seconds

Preventive effects of nano-graphene oxide against Parkinson's disease via reactive oxygen species scavenging and anti-inflammation

  • Hee-Yeong Kim;Hyung Ho Yoon;Hanyu Seong;Dong Kwang Seo;Soon Won Choi;Jaechul Ryu;Kyung-Sun Kang;Sang Ryong Jeon
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.202-207
    • /
    • 2023
  • We investigated the neuroprotective effects of deca nano-graphene oxide (daNGO) against reactive oxygen species (ROS) and inflammation in the human neuroblastoma cell line SH-SY5Y and in the 6-hydroxydopamine (6-OHDA) induced Parkinsonian rat model. An MTT assay was performed to measure cell viability in vitro in the presence of 6-OHDA and/or daNGO. The intracellular ROS level was quantified using 2',7'-dichlorofluorescein diacetate. daNGO showed neuroprotective effects against 6-OHDA-induced toxicity and also displayed ROS scavenging properties. We then tested the protective effects of daNGO against 6-OHDA induced toxicity in a rat model. Stepping tests showed that the akinesia symptoms were improved in the daNGO group compared to the control group. Moreover, in an apomorphine-induced rotation test, the number of net contralateral rotations was decreased in the daNGO group compared to the control group. By immunofluorescent staining, the animals in the daNGO group had more tyrosine hydroxylase-positive cells than the controls. By anti-Iba1 staining, 6-OHDA induced microglial activation showed a significantly decrease in the daNGO group, indicating that the neuroprotective effects of graphene resulted from anti-inflammation. In conclusion, nano-graphene oxide has neuroprotective effects against the neurotoxin induced by 6-OHDA on dopaminergic neurons.

Influence of Endogenous Catecholamines on Guanabenz- lnduced Inhibition of Micturition Reflex in Rats (Guanabenz 투여에 의한 흰쥐의 배뇨반사억제작용에 미치는 내인성 Catecholamines의 영향)

  • Park, Sang-Yeoul;Sohn, Uy-Dong;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 1989
  • The effect of guanabenz on volume-induced micturition reflex contraction (VIMRC) in urethane-anethetized female rats was examined under adrenalectomy, chemical-sympathectomy, ganglionectomy, alpha-1, or alpha-2 blockade. Intracerbroventricular administration of guanalberz had little effect on VIMRC, but topical application suppressed amplitude and frequency of VIMRC. Guanabenz intravenous injection dose-dependently suppressed amplitude and frequency of VIMRC, with complete inhibition at dose of $100\;{\mu}g/kg$, but phenylephrine had no effect on VIMRC. Intravesicular peak pressure and amplitude of VIMRC were increased by 6-hydroxydopamine (6-OHDA) treatment when compared with control value, but yohimbine-, prazosin-hexamethonium-treatment and adrenalectomy did not show changes in VIMRC. Dose-response curve of guanabenz on amplitude and frequency of VIMRC shifted significantly to the right by treatment of yohimbine and 6-OHDA, and adrenalectomy. Median inhibitory dose $({\mu}g/kg)$ of guanabenz to amplitude of VIMRC showed 27.3 in control group, 381.6 in yohimbine, 294.1 in 6-OHDA and 54.1 in hexamethonium, and 38.8 in prazosin. Those of guanabenz to frequency of VIMRC showed 41.7 in control group, 571.1 in yohimbine, 410.8 in 6-OHDA, 141.4 in adrenalectomy, 59.6 in hexamethoinum and 31.4 in prazosin. These results suggest that guanabenz inhibits VIMRC through alpha-2 receptor stimulation rather than alpha-1 receptor stimulation and that catecholiamines released from sympathetic nerve ending and adrenal gland play a role in the inhibition.

  • PDF

Neuroprotective effect of fermented ginger extracts by Bacillus subtilis in SH-SY5Y cells (고초균에 의한 생강 발효 추출물의 신경세포 보호 효과)

  • Yang, Hee Sun;Kim, Mi Jin;Kim, Mina;Choe, Jeong-sook
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.618-630
    • /
    • 2021
  • Purpose: The ginger rhizome (Zingiber officinale) is widely cultivated as a spice for its aromatic and pungent components. One of its constituents, 6-hydroxydopamine (6-OHDA) is usually thought to cross the cell membrane through dopamine uptake transporters, and induce inhibition of mitochondrial respiration and the generation of intracellular reactive oxygen species (ROS). This study examines the neuroprotective effect and acetylcholinesterase (AChE) inhibitory activity of fermented ginger extracts (FGEs) on 6-OHDA induced toxicity in SH-SY5Y human neuroblastoma cells. Methods: Ginger was fermented using 2 species of Bacillus subtilis, with or without enzyme pretreatment. Each sample was extracted with 70% ethanol. Neurotoxicity was assessed by applying the EZ-Cytox cell viability assay and by measuring lactic dehydrogenase (LDH) release. Morphological changes of apoptotic cell nuclei were observed by Hoechst staining. Cell growth and apoptosis of SH-SY5Y cells were determined by Western blotting and enzyme activity analysis of caspase-3, and AChE enzymatic activity was determined by the colorimetric assay. Results: In terms of cell viability and LDH release, exposure to FGE showed neuroprotective activities against 6-OHDA stimulated stress in SH-SY5Y cells. Furthermore, FGE reduced the 6-OHDA-induced apoptosis, as determined by Hoechst staining. The occurrence of apoptosis in 6-OHDA treated cells was confirmed by determining the caspase-3 activity. Exposure to 6-OHDA resulted in increased caspase-3 activity of SH-SY5Y cells, as compared to the unexposed group. However, pre-treatment with FGE inhibited the activity of caspase-3. The neuroprotective effects of FGE were also found to be caspase-dependent, based on reduction of caspase-3 activity. Exposure to FGE also inhibited the activity of AChE induced by 6-OHDA, in a dose-dependent manner. Conclusion: Taken together, our results show that FGE exhibits a neuroprotective effect in 6-OHDA treated SH-SY5Y cells, thereby making it a potential novel agent for the prevention or treatment of neurodegenerative disease.

Protective Effect of Korean Red Ginseng against 6-Hydroxydopamine-induced Nitrosative Cell Death via Fortifying Cellular Defense System (6-Hydroxydopamine으로 유도된 질소적 세포 사멸에 대한 고려홍삼 추출물의 보호효과)

  • Lee, Chan;Jang, Jung-Hee;Park, Gyu Hwan
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.92-99
    • /
    • 2016
  • Parkinson's disease (PD) is one of the representative neurodegenerative movement disorders with the selective loss of dopaminergic neurons in the substantia nigra. 6-Hydroxydopamine (6-OHDA) is widely used as an experimental model system to mimic PD and has been reported to cause neuronal cell death via oxidative and/or nitrosative stress. Therefore, daily intake of dietary or medicinal plants which fortifies cellular antioxidant capacity can exert neuroprotective effects in PD. In the present study, we have investigated the protective effect of Korean red ginseng (KRG) against 6-OHDA-induced nitrosative death in C6 glioma cells. Treatment of C6 cells with 6-OHDA decreased cell viability and increased expression of inducible nitric oxide synthase, production of nitric oxide as well as peroxynitrite, and formation of nitrotyrosine. 6-OHDA led to apoptotic cell death as determined by decreased Bcl-2/Bax, phosphorylation of JNK, activation of caspase-3, and cleavage of PARP. Conversely, pretreatment of C6 cells with KRG attenuated 6-ODHA-induced cytotoxicity, apoptosis, and nitrosative damages. To further elucidate the molecular mechanism of KRG protection against 6-OHDA-induced nitrosative cell death, we have focused on the cellular self-defense molecules against exogenous noxious stimuli. KRG treatment up-regulated heme oxygenase-1 (HO-1), a key antioxidant enzyme essential for cellular defense against oxidative and/or nitrosative stress via activation of Nrf2. Taken together, these findings suggest KRG may have preventive and/or therapeutic potentials for the management of PD.

Differential Inhibition of $MPP^+$- or 6-Hydroxydopamine-induced Cell Viability Loss in PC12 Cells by Trifluoperazine and W-7

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.247-253
    • /
    • 2005
  • The present study assessed the effect of calmodulin antagonists trifluoperazine and W-7 against the cytotoxicity of $MPP^+$ and 6-bydroxydoparnine (6-OHDA) in relation to the mitochondrial dysfunction and cell death in PC12 cells. Trifluoperazine (an inhibitor of the mitochondrial permeability transition and calmodulin antagonist) and W-7 (a specific calmodulin antagonist) significantly attenuated the $MPP^+-induced$ cell viability loss in PC12 cells with a maximum inhibition at $0.5{\sim}1{\mu}M$; beyond these concentrations the inhibitory effect declined. Both compounds at this concentration range did not cause cell death significantly. In contrast to $MPP^+$, the trifluoperazine and W-7 did not depress the cytotoxic effect of 6-OHDA. Addition of trifluoperazine and W-7 inhibited the cytosolic accumulation of cytochrome c and caspase-3 activation in PC12 cells treated with $MPP^+$ and attenuated the formation of reactive oxygen species and the depletion of GSH, whereas both compounds did not reduce the effect of 6-OHDA. The results show that trifluoperazine and W-7 may attenuate the cytotoxicity of $MPP^+$ by inhibition of the mitochondrial permeability transition and calmodulin. Meanwhile, the cytotoxic effect of 6-OHDA seems to be mediated by the actions, which are different from $MPP^+$.

The Protective Effect of Chunghyul-dan(Qingxuedan) Against 6-hydroxydopamine Induced Neurotoxicity. (청혈단(淸血丹)의 6-hydroxydopamine에 의해 유발된 독성에 대한 신경세포보호효과)

  • Kim, Gwang-Ho;Kim, Jong-Woo;Chung, Sun-Yong;Cho, Sung-Hoon;Oh, Myun-Sook;Hwang, Wei-wan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.1
    • /
    • pp.21-42
    • /
    • 2009
  • Objectives : This Study was performed to assess the antioxidant and neuroprotective effect of Chunghyul-dan(Qingxuedan) in PC12 cells and primary rat mesencephalic dopaminergic neurons. Methods : The anioxidant effect was investigated using the DPPH radical and ABTS cation scavenging assays and total polyphenol amout of Chunghyul-dan(Qingxuedan). The neuroprotective effect of Chunghyul-dan(Qingxuedan) in PC12 cells was evaluated using MTT assay. The scavenging activity of Chunghyul-dan(Qingxuedan) on ROS production induced by 6-OHDA(6-hydroxydopamine) in PC12 cells was evaluated, as well as the attenuating effect on GSH reduction. Finally, we examined the neuroprotective effect of Chunghyul-dan(Qingxuedan) against 6-0HDA-induced toxicity in the primary culture of rat mesencephalic doperminergic neurons. Results : Chunghyul-dan(Qingxuedan) showed concentration-dependent scavenging activities in DPPH radical and ABTS cation scavenging assays and it was not cytotoxic to PC12 cells. In postand co-treatment, Chunghyul-dan(Qingxuedan) protected PC12 cells from the 6-OHDA induced toxicity at 50 and 100 ${\mu}$g/mL significantly. And Chunghyu!-dan(Qingxuedan) decreased the 6-OHDA induced ROS production at a dose dependent manner, while increaing the 6-OHDA induced GSH reduction at 50 and 100 ${\mu}$g/mL significantly. Finally, Chunghyul-dan(Qingxuedan) showed signicant protection of rat mescencephalic dopaminergic neurons from 6-OHDA at 1 ${\mu}$g/mL. Conclusions : These results demonstrate that Chunghyul-dan(Qingxuedan) has the antioxidant and neuroprotective effect against 6-0HDA induced cytotoxicity through decreasing ROS production and increasing GSH reduction.

  • PDF

Effects of Berberine on L-DOPA Therapy in 6-Hydroxydopamine-induced Rat Models of Parkinsonism (Berberine이 백서의 6-Hydroxydopamine-유도 파킨슨병 모델에서의 L-DOPA 요법에 미치는 영향)

  • Shin, Kun-Seong;Kwon, Ik-Hyun;Choi, Hyun-Sook;Lim, Sung-Cil;Hwang, Bang-Yeon;Lee, Myung-Koo
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.510-515
    • /
    • 2011
  • Isoquinoline compounds including berberine enhance L-DOPA-induced cytotoxicity in PC12 cells. In this study, the effects of berberine on L-DOPA therapy in unilateral 6-hydroxydopamine (6-OHDA)-induced rat models of parkinsonism were investigated. Rats were prepared for the models of Parkinson's disease by 6-OHDA-lesioning for 14 days and then treated with L-DOPA (10 mg/kg) with or without berberine (5 and 30 mg/kg, i.p.) for 21 days. Treatment with berberine (5 and 30 mg/kg, i.p.) showed a dopaminergic cell loss in substantia nigra of 6-OHDA-lesioned rats treated with L-DOPA: 30 mg/kg berberine was more intensive neurotoxic. The levels of dopamine were also decreased by berberine (5 and 30 mg/ kg) in striatum-substantia nigra of 6-OHDA-lesioned rats treated with L-DOPA. These results suggest that berberine aggravates cell death of dopaminergic neurons in L-DOPA-treated 6-OHDA-lesioned rat models of Parkinson's disease. Therefore, the long-term L-DOPA therapeutic patients with isoquinoline compounds including berberine may need to be checked for the adverse symptoms.

Impaired Voluntary Wheel Running Behavior in the Unilateral 6-Hydroxydopamine Rat Model of Parkinson's Disease

  • Pan, Qi;Zhang, Wangming;Wang, Jinyan;Luo, Fei;Chang, Jingyu;Xu, Ruxiang
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.2
    • /
    • pp.82-87
    • /
    • 2015
  • Objective : The aim of this study was to investigate voluntary wheel running behavior in the unilateral 6-hydroxydopamine (6-OHDA) rat model. Methods : Male Sprague-Dawley rats were assigned to 2 groups : 6-OHDA group (n=17) and control group (n=8). The unilateral 6-OHDA rat model was induced by injection of 6-OHDA into unilateral medial forebrain bundle using a stereotaxic instrument. Voluntary wheel running activity was assessed per day in successfully lesioned rats (n=10) and control rats. Each behavioral test lasted an hour. The following parameters were investigated during behavioral tests : the number of running bouts, the distance moved in the wheel, average peak speed in running bouts and average duration from the running start to the peak speed. Results : The number of running bouts and the distance moved in the wheel were significantly decreased in successfully lesioned rats compared with control rats. In addition, average peak speed in running bouts was decreased, and average duration from the running start to the peak speed was increased in lesioned animals, which might indicate motor deficits in these rats. These behavioral changes were still observed 42 days after lesion. Conclusion : Voluntary wheel running behavior is impaired in the unilateral 6-OHDA rat model and may represent a useful tool to quantify motor deficits in this model.

Neuroprotective Effects of Banryong-hwan in Primary Rat Mesencephalic Dopaminergic Neurons (반룡환의 흰쥐태아중뇌에서의 도파민세포 보호효과)

  • Ju, Mi-Sun;Kim, Hyo-Guen;Shim, Jin-Sup;Oh, Myung-Sook
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.53-60
    • /
    • 2008
  • Objectives : Oxidative stress has a critical role in neurodegenerative diseases. In this study, we investigated the antioxidant and neuroprotective effects of the ethanolic extract of Banryong-hwan (BRHE) in SH-SY5Y cells and primary rat mesencephalic dopaminergic neurons. Methods : To assess the antioxidant effects, we carried out 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging assay, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) radical cation decolorization assay, and determination of total polyphenolic content. We evaluated the effect of BRHE treatment on neuroprotection against 6-hydroxydopamine(6-OHDA) toxicity using thiazolyl blue tetrazolium bromide(MTT) assay, nitric oxide(NO) assay, reactive oxygen species(ROS) assay in SH-SY5Y cells and tyrosine hydroxylase(TH) immunocytochemistry in primary rat mesencephalic dopaminergic neurons. Results : BRHE showed IC50 values of 328.10 ${\mu}g/mL$ and 43.12 ${\mu}g/mL$ in DPPH assay and in ABTS assay, respectively. Total polyphenolic content was 180.76 ${\mu}g/mL$. In SH-SY5Y cells, BRHE significantly attenuated the toxicity induced by 6-OHDA at the concentrations of 25-100 ${\mu}g/mL$ pre- and post- treatment in MTT assay. While 6-OHDA increased the NO and ROS contents, BRHE decreased them in a dose dependent manner. Moreover, in primary dopaminergic neuron culture, BRHE significantly protect-ed the dopaminergic cell loss against 6-OHDA toxicity up to 136% at the concentration of 75 ${\mu}g/mL$. Conclusions : These results demonstrate that BRHE has neuroprotective effect against 6-OHDA induced neurotoxicity through decreasing NO and ROS generation.

  • PDF

Striatal Glutamate and GABA after High Frequency Subthalamic Stimulation in Parkinsonian Rat

  • Lee, Kyung Jin;Shim, Insop;Sung, Jae Hoon;Hong, Jae Taek;Kim, Il sup;Cho, Chul Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • Objective : High frequency stimulation (HFS) of the subthalamic nucleus (STN) is recognized as an effective treatment of advanced Parkinson's disease. However, the neurochemical basis of its effects remains unknown. The aim of this study is to investigate the effects of STN HFS in intact and 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rat model on changes of principal neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA) in the striatum. Methods : The authors examined extracellular glutamate and GABA change in the striatum on sham group, 6-OHDA group, and 6-OHDA plus deep brain stimulation (DBS) group using microdialysis methods. Results : High-pressure liquid chromatography was used to quantify glutamate and GABA. The results show that HFS-STN induces a significant increase of extracellular glutamate and GABA in the striatum of 6-OHDA plus DBS group compared with sham and 6-OHDA group. Conclusion : Therefore, the clinical results of STN-HFS are not restricted to the direct STN targets but involve widespread adaptive changes within the basal ganglia.