• Title/Summary/Keyword: 6-DOF simulation

Search Result 197, Processing Time 0.026 seconds

Performance Comparison of Three Different Types of Attitude Control Systems of the Quad-Rotor UAV to Perform Flip Maneuver

  • Lee, Byung-Yoon;Yoo, Dong-Wan;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • This paper addresses the performance of three different types of attitude control systems for the Quad-rotor UAV to perform the flip maneuver. For this purpose, Quad-rotor UAV's 6-DOF dynamic model is derived, and it was used for designing an attitude controller of the Quad-rotor UAV. Attitude controllers are designed by three different methods. One is the open-loop control system design, another is the PD control system design, and the last method is the sliding mode control system design. Performances of all controllers are tested by 6-DOF simulation. In case of the open-loop control system, control inputs are calculated by the quad-rotor dynamic model and thrust system model that are identified by the thrust test. The 6-DOF realtime simulation environment was constructed in order to verify the performances of attitude controllers.

Real-time system control for the 6-DOF simulation (6-DOF 시뮬레이터의 real-time 시스템 제어에 관한 연구)

  • 김영대;김충영;백인철;민성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.17-21
    • /
    • 1989
  • 6-DOE simulator system is designed to real-time processing for motion control, data acquisition, image generation and image processing etc.. In this paper, we introduce hardware and software design technologies for distributed processing, event-trapping, system monitoring and time scheduling procedure in 6-DOF simulator system design.

  • PDF

Inverse and Forward Kinematics Analysis of 6 DOF Multi Axis Simulation Table and Verification (6 자유도 다축 시뮬레이션 테이블의 역.순기구학 해석 및 검증)

  • Jin, Jae-Hyun;Jeon, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.202-208
    • /
    • 2008
  • A 6 DOF Multi axis simulation table (MAST) is used to perform vibration and fatigue tests for parts or assemblies of automobiles, aircraft, or other systems. It consists of a table and 6 linear actuators. For its attitude control, we have to adjust the lengths of 6 actuators properly. The system is essentially a parallel mechanism. Three actuators are connected to the table directly and other three actuators are connected indirectly. Because of these, the MAST shows also a serial mechanism#s property: the inverse kinematics is more complicated than a pure parallel mechanism and each actuator can operate independently. The authors have performed a kinematics analysis of the 6 DOF MAST. We have presented an analytical and a numerical solution for the inverse and forward kinematics, and we have verified the solutions by a 3D CAD software.

3-Dimensional Path Planning and Guidance using the Dubins Curve for an 3-DOF Point-mass Aircraft Model (Dubins 곡선을 이용한 항공기 3자유도 질점 모델의 3차원 경로계획 및 유도)

  • O, Su-Hun;Ha, Chul-Su;Kang, Seung-Eun;Mok, Ji-hyun;Ko, Sangho;Lee, Yong-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we integrate three degree of freedom(3DOF) point-mass model for aircraft and three-dimensional path generation algorithms using dubins curve and nonlinear path tracking law. Through this integration, we apply the path generation algorithm to the path planning, and verify tracking performance and feasibility of using the aircraft 3DOF point-mass model for air traffic management. The accuracy of modeling 6DOF aircraft is more accurate than that of 3DOF model, but the complexity of the calculation would be raised, in turn the rate of computation is more likely to be slow due to the increase of degree of freedom. These obstacles make the 6DOF model difficult to be applied to simulation requiring real-time path planning. Therefore, the 3DOF point-mass model is also sufficient for simulation, and real-time path planning is possible because complexity can be reduced, compared to those of the 6DOF. Dubins curve used for generating the optimal path has advantage of being directly available to apply path planning. However, we use the algorithm which extends 2D path to 3D path since dubins curve handles the two dimensional path problems. Control law for the path tracking uses the nonlinear path tracking laws. Then we present these concomitant simulation results.

Simulation-Based Determination of Hydrodynamic Derivatives and 6DOF Motion Analysis for Underwater Vehicle (시뮬레이션 기반 수중 운동체의 유체력 미계수 결정 및 6자유도 운동해석)

  • Go, Gwangsoo;Ahn, Hyung Taek;Ahn, Jin-Hyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • This paper introduces a simulation-based determination method for hydrodynamic derivatives and 6DOF (degrees-offreedom) motion analysis for an underwater vehicle. Hydrodynamic derivatives were derived from second-order modulus expansion and composed of the added mass, and linear and nonlinear damping coefficients. The added mass coefficients were analytically obtained using the potential theory. All of the linear and nonlinear damping coefficients were determined using CFD simulation, which were performed for various cases based on the actual operating condition. Then, the linear and nonlinear damping coefficients were determined by fitting the CFD results, which referred to 6DOF forces and moments acting on an underwater vehicle, with the least square method. To demonstrate the applicability of the current study, 6DOF simulations for three different scenarios (L-, U-, and S-turn) were carried out, and the results were validated on the basis of physical plausibility.

Development of an Off-line 6-DOF Simulation Program for Store Separation Analysis (외부 장착물 분리 해석을 위한 Off-line 6-DOF 시뮬레이션 프로그램 개발)

  • Kwak, Ein-Keun;Shin, Jae-Hwa;Lee, Seung-Soo;Choi, Kee-Young;Hyun, Jae-Soo;Kim, Nam-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1252-1257
    • /
    • 2009
  • Off-line 6-DOF simulation program for store separation analysis has been developed. The developed program enables to predict a trajectory of a store from the database which was constructed by wind tunnel testing or CFD analysis. The flow angle method was applied to the program for predicting aerodynamic coefficients from the database and the ejector forces and constraints were enabled to incorporate the equations of motion for computing the trajectory. Using the program, the trajectories were calculated and the results are compared with the CTS results.

Separation Analysis of a Store with Deployable Wings (날개 전개가 가능한 무장의 분리 특성해석)

  • Kim, Byeong-Kyoo;Kim, Sang-Jin;Kang, In-Mo;Kim, Myung-Seong;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.381-389
    • /
    • 2007
  • 6-DOF simulation program is developed in order to increase the efficiency of the store separation analysis. This S/W is much faster than a method based on CFD(Computational Fluid Dynamics) technology, and allows the simulation of stores with fixed shape as well as with extensible wings, because it uses aerodynamic databases which are prepared beforehand. In this paper, aerodynamic databases of stores are obtained with MSAP(Multi-body Separation Analysis Program), and unsteady damping coefficients are modeled with Missile Datcom. These databases and the 6-DOF simulation program are used to predict the trajectory of an external store, while its wings are being deployed. The analysis results indicate that the safe separations of the store can be achieved not only with the wing fixed but with the wings being deployed.

A Study on Simscape based 6DOF Field Robot Simulation Model (Simscape 기반 6자유도 필드로봇 시뮬레이션 모델에 관한 연구)

  • Choi, Seong Woong;Kwak, Kyung Sin;Le, Quang Hoan;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Field robots operate in various areas, including construction, agriculture, forestry and manufacturing. Typical tasks of field robots used in various areas include excavation, flattening, and demolition. Such tasks are often accomplished in narrow alleys or indoors. In the case of field robots, there is a limit to working in a small space. Thus, to compensate for these shortcomings, many field robots equipped with Tiltrotators have recently been observed. The advantages of Tiltrotator are improved task efficiency and reduced operating time by reducing unnecessary behavior. We need simulation models that can improve the ability of new people to work and simulate tasks in advance. Thus, in this paper, we developed a simscape-based simulation model and modeling of 6DOF systems for field robots equipped with Tiltrotator. Dynamic modeling of field robot 3D models using Simcape multibody and hydraulic systems of field robots using Simcape Hydraulics were modeled. We applied a PID controller to create a control system that operates along the input angle. Simulation results show that errors occur when comparing input and output angles, but overall, they move along input angles.

Geometrical approach for the workspace of a 6-DOF parallel manipulator (6자유도 병렬형 매니퓰레이터의 작업공간결정을 위한 기하학적 접근)

  • 김도익;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.217-220
    • /
    • 1996
  • In this paper, a fully geometrical method for the determination of the workspace of a 6-DOF parallel manipulator is presented using the concept of 4-bar linkage. The reachable and dexterous can be determined from the proposed algorithm. In order to evaluate the workspace, each leg is considered as an open chain, and two kinematic constraints are developed. The proposed method is verified by simulation.

  • PDF